Puma Energy Bitumen Cutback AMC1 #### **Puma Energy Australia** Chemwatch: **49-8088** Version No: **3.1.1.1** Safety Data Sheet according to WHS and ADG requirements #### Chemwatch Hazard Alert Code: 2 Issue Date: 21/04/2016 Print Date: 07/09/2017 L.GHS.AUS.EN #### SECTION 1 IDENTIFICATION OF THE SUBSTANCE / MIXTURE AND OF THE COMPANY / UNDERTAKING #### **Product Identifier** | Product name | Puma Energy Bitumen Cutback AMC1 | | |-------------------------------|---|--| | Synonyms | Not Available | | | Proper shipping name | ELEVATED TEMPERATURE LIQUID, FLAMMABLE, N.O.S. with flash point above 60°C, at or above its flash point (contains bitumen road making, kerosene, (petroleum), hydrodesulfurised and kerosene) | | | Other means of identification | Not Available | | #### Relevant identified uses of the substance or mixture and uses advised against | Relevant identified | Bitumen product for road building, industrial and civil engineering materials and processes. | |---------------------|--| | uses | Ditanten product for road building, industrial and of the engineering materials and processes. | #### Details of the supplier of the safety data sheet | Registered company name | Puma Energy Australia | |-------------------------|--| | Address | 365 Macarthur Avenue Hamilton QLD 4007 Australia | | Telephone | 1300 723 706 | | Fax | 1300 723 321 | | Website | www.Pumaenergy.com | | Email | PumaAu-Safety@pumaenergy.com | #### **Emergency telephone number** | Association / Organisation | Chemwatch Emergency Line 24/7 | | |-----------------------------------|--|--| | Emergency telephone numbers | 1800 039 008 | | | Other emergency telephone numbers | 1800 24 88 66 (Puma Energy Bitumen Technical Helpline) | | #### **CHEMWATCH EMERGENCY RESPONSE** | Primary Number | Alternative Number 1 | Alternative Number 2 | |----------------|----------------------|----------------------| | 1800 039 008 | 1800 039 008 | +612 9186 1132 | Once connected and if the message is not in your prefered language then please dial 01 #### **SECTION 2 HAZARDS IDENTIFICATION** #### Classification of the substance or mixture CHEMWATCH HAZARD RATINGS Chemwatch: 49-8088 Page 2 of 18 Version No: 3.1.1.1 #### **Puma Energy Bitumen Cutback AMC1** Issue Date: 21/04/2016 Print Date: 07/09/2017 | Poisons Schedule | S5 | |-------------------------------|---| | Classification ^[1] | Flammable Liquid Category 3, Skin Corrosion/Irritation Category 2, Specific target organ toxicity - single exposure Category 3 (narcotic effects), Aspiration Hazard Category 1, Acute Aquatic Hazard Category 2, Chronic Aquatic Hazard Category 2 | | Legend: | 1. Classified by Chemwatch; 2. Classification drawn from HSIS; 3. Classification drawn from EC Directive 1272/2008 - Annex VI | #### Label elements Hazard pictogram(s) SIGNAL WORD DANGER #### Hazard statement(s) | H226 | Flammable liquid and vapour. | |------|--| | H315 | Causes skin irritation. | | H336 | May cause drowsiness or dizziness. | | H304 | May be fatal if swallowed and enters airways. | | H411 | Toxic to aquatic life with long lasting effects. | #### Precautionary statement(s) Prevention | P210 | Keep away from heat/sparks/open flames/hot surfaces No smoking. | |------|---| | P271 | Use only outdoors or in a well-ventilated area. | | P240 | Ground/bond container and receiving equipment. | | P241 | Use explosion-proof electrical/ventilating/lighting/intrinsically safe equipment. | | P242 | Use only non-sparking tools. | | P243 | Take precautionary measures against static discharge. | | P261 | Avoid breathing mist/vapours/spray. | | P273 | Avoid release to the environment. | | P280 | Wear protective gloves/protective clothing/eye protection/face protection. | ## Precautionary statement(s) Response | P301+P310 | IF SWALLOWED: Immediately call a POISON CENTER or doctor/physician. | | |----------------|--|--| | P331 | Do NOT induce vomiting. | | | P362 | Take off contaminated clothing and wash before reuse. | | | P370+P378 | In case of fire: Use alcohol resistant foam or fine spray/water fog for extinction. | | | P312 | Call a POISON CENTER or doctor/physician if you feel unwell. | | | P391 | Collect spillage. | | | P302+P352 | IF ON SKIN: Wash with plenty of soap and water. | | | P303+P361+P353 | IF ON SKIN (or hair): Remove/Take off immediately all contaminated clothing. Rinse skin with water/shower. | | | P304+P340 | IF INHALED: Remove victim to fresh air and keep at rest in a position comfortable for breathing. | | | P332+P313 | If skin irritation occurs: Get medical advice/attention. | | ## Precautionary statement(s) Storage | P403+P235 | Store in a well-ventilated place. Keep cool. | | |-----------|--|--| | P405 | Store locked up. | | Chemwatch: 49-8088 Page 3 of 18 Version No: 3.1.1.1 Puma Energy Bitumen Cutback AMC1 Issue Date: 21/04/2016 Print Date: 07/09/2017 #### Precautionary statement(s) Disposal P501 Dispose of contents/container in accordance with local regulations. #### SECTION 3 COMPOSITION / INFORMATION ON INGREDIENTS #### **Substances** See section below for composition of Mixtures #### **Mixtures** | CAS No | %[weight] | Name | |------------|-----------|--| | 8052-42-4 | 70-80 | bitumen road making | | 64742-81-0 | 20-30 | kerosene, (petroleum), hydrodesulfurised | | | | or | | 8008-20-6 | 20-30 | kerosene | | 7783-06-4 | trace | hydrogen sulfide | #### **SECTION 4 FIRST AID MEASURES** | | If this product comes in contact with the eyes: | |--------------|--| | | ► Wash out immediately with fresh running water. | | | ► Ensure complete irrigation of the eye by keeping eyelids apart and away from eye and moving the eyelids by occasionally | | Eye Contact | lifting the upper and lower lids. | | | ▶ Seek medical attention without delay; if pain persists or recurs seek medical attention. | | | ▶ Removal of contact lenses after an eye injury should only be undertaken by skilled personnel. | | | If skin contact occurs: | | | ► Immediately remove all contaminated clothing, including footwear. | | | ▶ Flush skin and hair with running water (and soap if available). | | | ► Seek medical attention in event of irritation. | | | ▶ Immediately drench burn area in cold running water. | | | ▶ If hot bitumen adheres to the skin, DO NOT attempt to remove it (it acts as a sterile dressing). | | | For burns to the head and neck and trunk, apply cold wet towels to the burn area, and change frequently to maintain | | | cooling. • Cooling should be maintained for no longer than thirty minutes. | | | · · · · · · · · · · · · · · · · · · · | | | When hot bitumen completely encircles a limb, it may have a tourniquet effect and should be split as it cools. Transport to begain a dector. | | Skin Contact | Transport to hospital or doctor. | | | In case of burns: | | | Immediately apply cold water to burn either by immersion or wrapping with saturated clean cloth. | | | • DO NOT remove or cut away clothing over burnt areas. DO NOT pull away clothing which has adhered to the skin as this | | | can cause further injury. | | | DO NOT break blister or remove solidified material. | | | • Quickly cover wound with dressing or clean cloth to help prevent infection and to ease pain. | | | For large burns, sheets, towels or pillow slips are ideal; leave holes for eyes, nose and mouth. | | | DO NOT apply ointments, oils, butter, etc. to a burn under any circumstances. | | | Water may be given in small quantities if the person is conscious. | | | • Alcohol is not to be given under any circumstances. | | | ▶ Reassure. | | | Treat for shock by keeping the person warm and in a lying position. | | | • Seek medical aid and advise medical personnel in advance of the cause and extent of the injury and the estimated time of | | | arrival of the patient. | | | If fumes or combustion products are inhaled remove from contaminated area. | | | Lay patient down. Keep warm and rested. | | | Prostheses such as false teeth, which may block airway, should be removed, where possible, prior to initiating first aid | | Inhalation | procedures. | | | Apply artificial respiration if not breathing, preferably with a demand valve resuscitator, bag-valve mask device, or pocket | | | mask as trained. Perform CPR if necessary. | | | ► Transport to hospital, or doctor. | | | If swallowed do NOT induce vomiting. | | | If vomiting occurs, lean patient forward or place on left side (head-down position, if possible) to maintain open airway and | | | prevent aspiration. | | Ingestion | Observe the patient carefully. | | | Never give liquid to a person showing signs of being sleepy or with reduced awareness; i.e. becoming unconscious. | | | | • Give water to rinse out mouth, then provide liquid slowly and as much as casualty can comfortably drink. ▶ Seek medical advice. Chemwatch: 49-8088 Page 4 of 18 Issue Date: 21/04/2016 Version No: 3.1.1.1 #### **Puma Energy
Bitumen Cutback AMC1** Print Date: 07/09/2017 - Avoid giving milk or oils. Avoid giving alcohol. - ▶ If spontaneous vomiting appears imminent or occurs, hold patient's head down, lower than their hips to help avoid possible aspiration of vomitus. #### Indication of any immediate medical attention and special treatment needed For acute or short term repeated exposures to petroleum distillates or related hydrocarbons: - Primary threat to life, from pure petroleum distillate ingestion and/or inhalation, is respiratory failure. - Patients should be quickly evaluated for signs of respiratory distress (e.g. cyanosis, tachypnoea, intercostal retraction, obtundation) and given oxygen. Patients with inadequate tidal volumes or poor arterial blood gases (pO2 50 mm Hg) should be intubated. - Arrhythmias complicate some hydrocarbon ingestion and/or inhalation and electrocardiographic evidence of myocardial injury has been reported; intravenous lines and cardiac monitors should be established in obviously symptomatic patients. The lungs excrete inhaled solvents, so that hyperventilation improves clearance. - A chest x-ray should be taken immediately after stabilisation of breathing and circulation to document aspiration and detect the presence of pneumothorax - Epinephrine (adrenalin) is not recommended for treatment of bronchospasm because of potential myocardial sensitisation to catecholamines. Inhaled cardioselective bronchodilators (e.g. Alupent, Salbutamol) are the preferred agents, with aminophylline a second choice. - Lavage is indicated in patients who require decontamination; ensure use of cuffed endotracheal tube in adult patients. [Ellenhorn and Barceloux: Medical Toxicology] Any material aspirated during vomiting may produce lung injury. Therefore emesis should not be induced mechanically or pharmacologically. Mechanical means should be used if it is considered necessary to evacuate the stomach contents; these include gastric lavage after endotracheal intubation. If spontaneous vomiting has occurred after ingestion, the patient should be monitored for difficult breathing, as adverse effects of aspiration into the lungs may be delayed up to 48 hours. Burns: No attempt should be made to remove the bitumen (it acts as a sterile dressing). Cover the bitumen with tulle gras and leave for two days when any detached bitumen can be removed. Re-dress and leave for a further week. If necessary refer to a burns unit. [Manufacturer] #### **SECTION 5 FIREFIGHTING MEASURES** #### **Extinguishing media** - Do NOT direct a solid stream of water or foam into burning molten material; this may cause spattering and spread the fire. - ► Water spray or fog. - Foam. - Dry chemical powder. - BCF (where regulations permit). - · Carbon dioxide. #### Special hazards arising from the substrate or mixture Fire Incompatibility · Avoid contamination with oxidising agents i.e. nitrates, oxidising acids, chlorine bleaches, pool chlorine etc. as ignition may result #### Advice for firefighters #### ▶ Alert Fire Brigade and tell them location and nature of hazard. ▶ May be violently or explosively reactive. Wear breathing apparatus plus protective gloves. Prevent, by any means available, spillage from entering drains or water course. ▶ If safe, switch off electrical equipment until vapour fire hazard removed. Fire Fighting ▶ Use water delivered as a fine spray to control fire and cool adjacent area. Avoid spraying water onto liquid pools. ▶ DO NOT approach containers suspected to be hot. ▶ Cool fire exposed containers with water spray from a protected location. If safe to do so, remove containers from path of fire. ▶ Liquid and vapour are flammable. Moderate fire hazard when exposed to heat or flame. ▶ Vapour forms an explosive mixture with air. Moderate explosion hazard when exposed to heat or flame. ▶ Vapour may travel a considerable distance to source of ignition. #### Fire/Explosion Hazard ▶ On combustion, may emit toxic fumes of carbon monoxide (CO). Combustion products include: carbon dioxide (CO2) ▶ Heating may cause expansion or decomposition leading to violent rupture of containers. carbon monoxide (CO) sulfur oxides (SOx) hydrogen sulfide (H2S) Chemwatch: 49-8088 Page 5 of 18 Issue Date: 21/04/2016 Version No: 3.1.1.1 #### **Puma Energy Bitumen Cutback AMC1** Print Date: 07/09/2017 other pyrolysis products typical of burning organic material. May emit clouds of acrid smoke NOTE: Burns with intense heat. Produces melting, flowing, burning liquid and dense acrid black smoke. CARE: Contamination of heated / molten liquid with water may cause violent steam explosion, with scattering of hot contents. **HAZCHEM** #### **SECTION 6 ACCIDENTAL RELEASE MEASURES** #### Personal precautions, protective equipment and emergency procedures See section 8 #### **Environmental precautions** See section 12 #### Methods and material for containment and cleaning up - ▶ Remove all ignition sources. - ► Clean up all spills immediately. - Avoid breathing vapours and contact with skin and eyes. #### Minor Spills ▶ Control personal contact with the substance, by using protective equipment. - ▶ Contain and absorb small quantities with vermiculite or other absorbent material. - ▶ Wipe up. - ▶ Collect residues in a flammable waste container. Chemical Class: aliphatic hydrocarbons For release onto land: recommended sorbents listed in order of priority. | SORBENT
TYPE | RANK | APPLICATION | COLLECTION | LIMITATIONS | |-----------------|------|-------------|------------|-------------| |-----------------|------|-------------|------------|-------------| #### LAND SPILL - SMALL | cross-linked polymer - particulate | 1 | shovel | shovel | R, W, SS | |------------------------------------|---|--------|-----------|---------------| | cross-linked polymer - pillow | 1 | throw | pitchfork | R, DGC, RT | | wood fiber - pillow | 2 | throw | pitchfork | R, P, DGC, RT | | treated wood fibre- pillow | 2 | throw | pitchfork | DGC, RT | | sorbent clay - particulate | 3 | shovel | shovel | R, I, P | | foamed glass - pillow | 3 | throw | pitchfork | R, P, DGC, RT | #### LAND SPILL - MEDIUM #### **Major Spills** | cross-linked polymer - particulate | 1 | blower | skiploader | R,W, SS | |------------------------------------|---|--------|------------|-----------------| | cross-linked polymer - pillow | 2 | throw | skiploader | R, DGC, RT | | sorbent clay - particulate | 3 | blower | skiploader | R, I, P | | polypropylene - particulate | 3 | blower | skiploader | W, SS, DGC | | expanded mineral - particulate | 4 | blower | skiploader | R, I, W, P, DGC | | polypropylene - mat | 4 | throw | skiploader | DGC, RT | #### Legend DGC: Not effective where ground cover is dense R; Not reusable I: Not incinerable P: Effectiveness reduced when rainy RT:Not effective where terrain is rugged SS: Not for use within environmentally sensitive sites W: Effectiveness reduced when windy Reference: Sorbents for Liquid Hazardous Substance Cleanup and Control; R.W Melvold et al: Pollution Technology Review No. 150: Noyes Data Corporation 1988 - ▶ Clear area of personnel and move upwind. - ▶ Alert Fire Brigade and tell them location and nature of hazard. - May be violently or explosively reactive. - Wear breathing apparatus plus protective gloves. - ▶ Prevent, by any means available, spillage from entering drains or water course. - ► Consider evacuation (or protect in place). - ▶ No smoking, naked lights or ignition sources. Chemwatch: 49-8088 Page 6 of 18 Issue Date: 21/04/2016 Version No: 3.1.1.1 #### **Puma Energy Bitumen Cutback AMC1** Print Date: 07/09/2017 - Increase ventilation - ▶ Stop leak if safe to do so. - ▶ Water spray or fog may be used to disperse /absorb vapour. - Contain spill with sand, earth or vermiculite. - ▶ Use only spark-free shovels and explosion proof equipment. - ▶ Collect recoverable product into labelled containers for recycling. - Absorb remaining product with sand, earth or vermiculite. - ▶ Collect solid residues and seal in labelled drums for disposal. - Wash area and prevent runoff into drains. - ▶ If contamination of drains or waterways occurs, advise emergency services. Personal Protective Equipment advice is contained in Section 8 of the SDS. #### **SECTION 7 HANDLING AND STORAGE** #### Precautions for safe handling Safe handling Other information The conductivity of this material may make it a static accumulator., A liquid is typically considered nonconductive if its conductivity is below 100 pS/m and is considered semi-conductive if its conductivity is below 10 000 pS/m., Whether a liquid is nonconductive or semi-conductive, the precautions are the same., A number of factors, for example liquid temperature, presence of contaminants, and anti-static additives can greatly influence the conductivity of a liquid. Even with proper grounding and bonding, this material can still accumulate an electrostatic charge. If sufficient charge is allowed to accumulate, electrostatic discharge and ignition of flammable air-vapour mixtures can occur. - ▶ Containers, even those that have been emptied, may contain explosive vapours. - ▶ Do NOT cut, drill, grind, weld or perform similar operations on or near containers. - ► DO NOT allow clothing wet with material to stay in contact with skin - Electrostatic discharge may be generated during pumping this may result in fire. - ► Ensure electrical continuity by bonding and grounding (earthing) all equipment. - ▶ Restrict line velocity during pumping in order to avoid generation of electrostatic discharge (<=1 m/sec until fill pipe submerged to twice its diameter, then <= 7 m/sec). - Avoid splash filling. - ▶ Do NOT use compressed air for filling discharging or handling operations. - · Avoid all personal contact, including inhalation. - Wear protective clothing when risk of overexposure occurs. - ▶ Use in a well-ventilated area. - Prevent concentration in hollows and sumps. - ▶ DO NOT enter confined spaces until atmosphere has been checked. -
Avoid smoking, naked lights or ignition sources. - ▶ Avoid generation of static electricity. - ► DO NOT use plastic buckets. - Earth all lines and equipment. - ▶ Use spark-free tools when handling. - Avoid contact with incompatible materials. - ▶ When handling, **DO NOT** eat, drink or smoke. - ▶ Keep containers securely sealed when not in use. - Avoid physical damage to containers. Always wash hands with soap and water after handling. - Work clothes should be laundered separately. - Use good occupational work practice. - ▶ Observe manufacturer's storage and handling recommendations contained within this SDS. - Atmosphere should be regularly checked against established exposure standards to ensure safe working conditions. - ▶ Store in original containers in approved flammable liquid storage area. - Store away from incompatible materials in a cool, dry, well-ventilated area. - ▶ DO NOT store in pits, depressions, basements or areas where vapours may be trapped. - ▶ No smoking, naked lights, heat or ignition sources. - ▶ Storage areas should be clearly identified, well illuminated, clear of obstruction and accessible only to trained and authorised personnel - adequate security must be provided so that unauthorised personnel do not have access. - Store according to applicable regulations for flammable materials for storage tanks, containers, piping, buildings, rooms, cabinets, allowable quantities and minimum storage distances. - ▶ Use non-sparking ventilation systems, approved explosion proof equipment and intrinsically safe electrical systems. - ▶ Have appropriate extinguishing capability in storage area (e.g. portable fire extinguishers dry chemical, foam or carbon dioxide) and flammable gas detectors. - Keep adsorbents for leaks and spills readily available. - Protect containers against physical damage and check regularly for leaks. - ▶ Observe manufacturer's storage and handling recommendations contained within this SDS. In addition, for tank storages (where appropriate): - ▶ Store in grounded, properly designed and approved vessels and away from incompatible materials. - For bulk storages, consider use of floating roof or nitrogen blanketed vessels; where venting to atmosphere is possible, equip storage tank vents with flame arrestors; inspect tank vents during winter conditions for vapour/ ice build-up. - Storage tanks should be above ground and diked to hold entire contents. Chemwatch: 49-8088 Page 7 of 18 Issue Date: 21/04/2016 Version No: 3.1.1.1 Print Date: 07/09/2017 #### **Puma Energy Bitumen Cutback AMC1** #### Conditions for safe storage, including any incompatibilities - Packing as supplied by manufacturer. - ▶ Plastic containers may only be used if approved for flammable liquid. - ▶ Check that containers are clearly labelled and free from leaks. - ▶ For low viscosity materials (i): Drums and jerry cans must be of the non-removable head type. (ii): Where a can is to be used as an inner package, the can must have a screwed enclosure. - ▶ For materials with a viscosity of at least 2680 cSt. (23 deg. C) - ▶ For manufactured product having a viscosity of at least 250 cSt. (23 deg. C) - Manufactured product that requires stirring before use and having a viscosity of at least 20 cSt (25 deg. C): (i) Removable head packaging; (ii) Cans with friction closures and (iii) low pressure tubes and cartridges may be used. - ▶ Where combination packages are used, and the inner packages are of glass, there must be sufficient inert cushioning material in contact with inner and outer packages - ▶ In addition, where inner packagings are glass and contain liquids of packing group I there must be sufficient inert absorbent to absorb any spillage, unless the outer packaging is a close fitting moulded plastic box and the substances are not incompatible with the plastic. ## Storage incompatibility Suitable container Hydrogen sulfide (H2S): - is a highly flammable and reactive gas - reacts violently with strong oxidisers, metal oxides, metal dusts and powders, bromine pentafluoride, chlorine trifluoride, chromium trioxide, chromyl chloride, dichlorine oxide, nitrogen trichloride, nitryl hypofluorite, oxygen difluoride, perchloryl fluoride, phospham, phosphorus persulfide, silver fulminate, soda-lime, sodium peroxide - ▶ is incompatible with acetaldehyde, chlorine monoxide, chromic acid, chromic anhydride, copper, nitric acid, phenyldiazonium chloride, sodium - forms explosive material with benzenediazonium salts - attacks many metals Flow or agitation of hydrogen sulfide may generate electrostatic charges due to low conductivity Avoid reaction with oxidising agents #### SECTION 8 EXPOSURE CONTROLS / PERSONAL PROTECTION #### **Control parameters** #### OCCUPATIONAL EXPOSURE LIMITS (OEL) #### INGREDIENT DATA | Source | Ingredient | Material name | TWA | STEL | Peak | Notes | |---------------------------------|---------------------|-------------------|-------------------|-------------------|---------------|---------------| | Australia Exposure
Standards | bitumen road making | Bitumen fumes | 5 mg/m3 | Not Available | Not Available | Not Available | | Australia Exposure
Standards | hydrogen sulfide | Hydrogen sulphide | 14 mg/m3 / 10 ppm | 21 mg/m3 / 15 ppm | Not Available | Not Available | #### **EMERGENCY LIMITS** | Ingredient | Material name | TEEL-1 | TEEL-2 | TEEL-3 | |---------------------|--|------------------|------------------|------------------| | bitumen road making | Petroleum asphalt; (Bitumen) | 30 mg/m3 | 330
mg/m3 | 2,000
mg/m3 | | kerosene | Mineral oil, heavy or light; (paraffin oil; Deobase, deodorized; heavy paraffinic; heavy naphthenic); distillates; includes 64741-53-3, 64741-88-4, 8042-47-5, 8012-95-1; 64742-54-7 | 140
mg/m3 | 1,500
mg/m3 | 8,900
mg/m3 | | hydrogen sulfide | Hydrogen sulfide | Not
Available | Not
Available | Not
Available | | Ingredient | Original IDLH | Revised IDLH | |---|---------------|---------------| | bitumen road making | Not Available | Not Available | | kerosene, (petroleum),
hydrodesulfurised | Not Available | Not Available | | kerosene | Not Available | Not Available | | hydrogen sulfide | 300 ppm | 100 ppm | ## MATERIAL DATA NOTE M: The classification as a carcinogen need not apply if it can be shown that the substance contains less than 0.005% w/w benzo[a]pyrene (EINECS No 200-028-5). This note applies only to certain complex oil-derived substances in Annex IV. European Union (EU) List of harmonised classification and labelling hazardous substances, Table 3.1, Annex VI, Regulation (EC) No 1272/2008 (CLP) - up to the latest ATP Chemwatch: 49-8088 Page 8 of 18 Version No: 3.1.1.1 **Puma Energy Bitumen Cutback AMC1** Issue Date: 21/04/2016 Print Date: 07/09/2017 #### **Exposure controls** For molten materials: Provide mechanical ventilation; in general such ventilation should be provided at compounding/ converting areas and at fabricating/ filling work stations where the material is heated. Local exhaust ventilation should be used over and in the vicinity of machinery involved in handling the molten material. Keep dry!! Processing temperatures may be well above boiling point of water, so wet or damp material may cause a serious steam explosion if used in unvented equipment. Engineering controls are used to remove a hazard or place a barrier between the worker and the hazard. Well-designed engineering controls can be highly effective in protecting workers and will typically be independent of worker interactions to provide this high level of protection. The basic types of engineering controls are: Process controls which involve changing the way a job activity or process is done to reduce the risk. Enclosure and/or isolation of emission source which keeps a selected hazard "physically" away from the worker and ventilation that strategically "adds" and "removes" air in the work environment. Ventilation can remove or dilute an air contaminant if designed properly. The design of a ventilation system must match the particular process and chemical or contaminant in use. Employers may need to use multiple types of controls to prevent employee overexposure. For flammable liquids and flammable gases, local exhaust ventilation or a process enclosure ventilation system may be required. Ventilation equipment should be explosion-resistant. Air contaminants generated in the workplace possess varying "escape" velocities which, in turn, determine the "capture velocities" of fresh circulating air required to effectively remove the contaminant. #### **Appropriate** engineering controls | Type of Contaminant: | Air Speed: | |---|---------------------------------------| | solvent, vapours, degreasing etc., evaporating from tank (in still air). | 0.25-0.5
m/s
(50-100
f/min.) | | aerosols, fumes from pouring operations, intermittent container filling, low speed conveyer transfers, welding, spray drift, plating acid fumes, pickling (released at low velocity into zone of active generation) | 0.5-1 m/s
(100-200
f/min.) | | direct spray, spray painting in shallow booths, drum filling, conveyer loading, crusher dusts, gas discharge (active generation into zone of rapid air motion) | 1-2.5 m/s
(200-500
f/min.) | Within each range the appropriate value depends on: | Lower end of the range | Upper end of the range | |--|----------------------------------| | 1: Room air currents minimal or favourable to capture | 1: Disturbing room air currents | | 2: Contaminants of low
toxicity or of nuisance value only. | 2: Contaminants of high toxicity | | 3: Intermittent, low production. | 3: High production, heavy use | | 4: Large hood or large air mass in motion | 4: Small hood-local control only | Simple theory shows that air velocity falls rapidly with distance away from the opening of a simple extraction pipe. Velocity generally decreases with the square of distance from the extraction point (in simple cases). Therefore the air speed at the extraction point should be adjusted, accordingly, after reference to distance from the contaminating source. The air velocity at the extraction fan, for example, should be a minimum of 1-2 m/s (200-400 f/min.) for extraction of solvents generated in a tank 2 meters distant from the extraction point. Other mechanical considerations, producing performance deficits within the extraction apparatus, make it essential that theoretical air velocities are multiplied by factors of 10 or more when extraction systems are installed or used. #### Personal protection - Safety glasses with side shields. - Chemical goggles. ► Contact lenses may pose a special hazard; soft contact lenses may absorb and concentrate irritants. A written policy document, describing the wearing of lenses or restrictions on use, should be created for each workplace or task. This should include a review of lens absorption and adsorption for the class of chemicals in use and an account of injury experience. Medical and first-aid personnel should be trained in their removal and suitable equipment should be readily available. In the event of chemical exposure, begin eye irrigation immediately and remove contact lens as soon as practicable. Lens should be removed at the first signs of eye redness or irritation - lens should be removed in a clean environment only after workers have washed hands thoroughly. [CDC NIOSH Current Intelligence Bulletin 59], [AS/NZS 1336 or national equivalent] #### Skin protection Eve and face protection See Hand protection below Chemwatch: 49-8088 Page 9 of 18 Issue Date: 21/04/2016 Version No: 3.1.1.1 #### **Puma Energy Bitumen Cutback AMC1** Print Date: 07/09/2017 #### Wear chemical protective gloves, e.g. PVC. ▶ Wear safety footwear or safety gumboots, e.g. Rubber The selection of suitable gloves does not only depend on the material, but also on further marks of quality which vary from manufacturer to manufacturer. Where the chemical is a preparation of several substances, the resistance of the glove material can not be calculated in advance and has therefore to be checked prior to the application. The exact break through time for substances has to be obtained from the manufacturer of the protective gloves and has to be observed when making a final choice. Personal hygiene is a key element of effective hand care. Gloves must only be worn on clean hands. After using gloves, hands should be washed and dried thoroughly. Application of a non-perfumed moisturizer is recommended. Suitability and durability of glove type is dependent on usage. Important factors in the selection of gloves include: - frequency and duration of contact, - chemical resistance of glove material, - glove thickness and - dexterity Select gloves tested to a relevant standard (e.g. Europe EN 374, US F739, AS/NZS 2161.1 or national equivalent). - When prolonged or frequently repeated contact may occur, a glove with a protection class of 5 or higher (breakthrough time greater than 240 minutes according to EN 374, AS/NZS 2161.10.1 or national equivalent) is recommended. - When only brief contact is expected, a glove with a protection class of 3 or higher (breakthrough time greater than 60 minutes according to EN 374, AS/NZS 2161.10.1 or national equivalent) is recommended. - Some glove polymer types are less affected by movement and this should be taken into account when considering gloves for long-term use. - Contaminated gloves should be replaced. For general applications, gloves with a thickness typically greater than 0.35 mm, are recommended. It should be emphasised that glove thickness is not necessarily a good predictor of glove resistance to a specific chemical, as the permeation efficiency of the glove will be dependent on the exact composition of the glove material. Therefore, glove selection should also be based on consideration of the task requirements and knowledge of breakthrough times. Glove thickness may also vary depending on the glove manufacturer, the glove type and the glove model. Therefore, the manufacturers' technical data should always be taken into account to ensure selection of the most appropriate glove for the Note: Depending on the activity being conducted, gloves of varying thickness may be required for specific tasks. For example: - Thinner gloves (down to 0.1 mm or less) may be required where a high degree of manual dexterity is needed. However, these gloves are only likely to give short duration protection and would normally be just for single use applications, then disposed of. - Thicker gloves (up to 3 mm or more) may be required where there is a mechanical (as well as a chemical) risk i.e. where there is abrasion or puncture potential Gloves must only be worn on clean hands. After using gloves, hands should be washed and dried thoroughly. Application of a non-perfumed moisturiser is recommended. - When handling hot materials wear heat resistant, elbow length gloves. - ▶ Rubber gloves are not recommended when handling hot objects, materials - ▶ Protective gloves eg. Leather gloves or gloves with Leather facing #### **Body protection** Hands/feet protection See Other protection below - ▶ When handling hot or molten liquids, wear trousers or overalls outside of boots, to avoid spills entering boots. - Usually handled as molten liquid which requires worker thermal protection and increases hazard of vapour exposure. - CAUTION: Vapours may be irritating. - Overalls. - ▶ PVC Apron. - ▶ PVC protective suit may be required if exposure severe. - ► Eyewash unit. - Ensure there is ready access to a safety shower. #### Other protection - Some plastic personal protective equipment (PPE) (e.g. gloves, aprons, overshoes) are not recommended as they may produce static electricity. - For large scale or continuous use wear tight-weave non-static clothing (no metallic fasteners, cuffs or pockets). - Non sparking safety or conductive footwear should be considered. Conductive footwear describes a boot or shoe with a sole made from a conductive compound chemically bound to the bottom components, for permanent control to electrically ground the foot an shall dissipate static electricity from the body to reduce the possibility of ignition of volatile compounds. Electrical resistance must range between 0 to 500,000 ohms. Conductive shoes should be stored in lockers close to the room in which they are worn. Personnel who have been issued conductive footwear should not wear them from their place of work to their homes and return. #### Thermal hazards Not Available #### Respiratory protection Type A-P Filter of sufficient capacity. (AS/NZS 1716 & 1715, EN 143:2000 & 149:2001, ANSI Z88 or national equivalent) Where the concentration of gas/particulates in the breathing zone, approaches or exceeds the "Exposure Standard" (or ES), respiratory protection is Degree of protection varies with both face-piece and Class of filter; the nature of protection varies with Type of filter. Chemwatch: 49-8088 Page 10 of 18 Issue Date: 21/04/2016 Version No: 3.1.1.1 Print Date: 07/09/2017 #### **Puma Energy Bitumen Cutback AMC1** | Required Minimum Protection Factor | Half-Face Respirator | Full-Face Respirator | Powered Air Respirator | |------------------------------------|----------------------|----------------------|-------------------------| | up to 10 x ES | A-AUS P2 | - | A-PAPR-AUS / Class 1 P2 | | up to 50 x ES | - | A-AUS / Class 1 P2 | - | | up to 100 x ES | - | A-2 P2 | A-PAPR-2 P2 ^ | #### ^ - Full-face A(All classes) = Organic vapours, B AUS or B1 = Acid gasses, B2 = Acid gas or hydrogen cyanide(HCN), B3 = Acid gas or hydrogen cyanide(HCN), E = Sulfur dioxide(SO2), G = Agricultural chemicals, K = Ammonia(NH3), Hg = Mercury, NO = Oxides of nitrogen, MB = Methyl bromide, AX = Low boiling point organic compounds(below 65 degC) Cartridge respirators should never be used for emergency ingress or in areas of unknown vapour concentrations or oxygen content. The wearer must be warned to leave the contaminated area immediately on detecting any odours through the respirator. The odour may indicate that the mask is not functioning properly, that the vapour concentration is too high, or that the mask is not properly fitted. Because of these limitations, only restricted use of cartridge respirators is considered appropriate. #### For molten materials: For concentrations exceeding 10 ppm hydrogen sulfide or for unknown concentrations: - Respirators should be equipped with pressure demand regulators and operated in pressure demand mode only. If airline units are used, a 5-minute egress bottle must also be carried. - Gas masks or other air-purifying respirators must never be used for H2S, due to the poor warning properties of the gas. - When exposure concentrations are unknown and respiratory protection is not used, personal H2S warning devices should be worn. - ▶ These devices should not be relied on to warn of life-threatening concentrations. - ▶ H2S rapidly fatigues the sense of smell; the rotten egg odour disappears quickly even where high concentrations are present. #### **SECTION 9 PHYSICAL AND CHEMICAL PROPERTIES** #### Information on basic physical and chemical properties | Appearance | Black colour flammable liquid with hydrocarbon odour; not miscible with water. | | | |--|--|--|------------------| | | | | | | Physical state | Liquid |
Relative density
(Water = 1) | 0.94 @ 15C | | Odour | Not Available | Partition coefficient
n-octanol / water | Not Available | | Odour threshold | Not Available | Auto-ignition temperature (°C) | 235 | | pH (as supplied) | Not Applicable | Decomposition temperature | Not Available | | Melting point / freezing point (°C) | Not Available | Viscosity (cSt) | 80-190 cPs @ 60C | | Initial boiling point and boiling range (°C) | 145 | Molecular weight
(g/mol) | Not Applicable | | Flash point (°C) | >38 | Taste | Not Available | | Evaporation rate | Not Available | Explosive properties | Not Available | | Flammability | Flammable. | Oxidising properties | Not Available | | Upper Explosive Limit (%) | 6 | Surface Tension
(dyn/cm or mN/m) | Not Available | | Lower Explosive Limit (%) | 0.7 | Volatile Component
(%vol) | Not Applicable | | Vapour pressure (kPa) | <0.3 | Gas group | Not Available | | Solubility in water (g/L) | Immiscible | pH as a solution (1%) | Not Available | | Vapour density (Air = 1) | >1 | VOC g/L | 237 | #### **SECTION 10 STABILITY AND REACTIVITY** | Reactivity | See section 7 | |---------------------------------------|---| | Chemical stability | Presence of heat source Unstable in the presence of incompatible materials. Product is considered stable. Hazardous polymerisation will not occur. | | Possibility of
hazardous reactions | See section 7 | Chemwatch: 49-8088 Page 11 of 18 Issue Date: 21/04/2016 Version No: 3.1.1.1 Print Date: 07/09/2017 #### **Puma Energy Bitumen Cutback AMC1** | Conditions to avoid | See section 7 | |--|---------------| | Incompatible materials | See section 7 | | Hazardous
decomposition
products | See section 5 | #### **SECTION 11 TOXICOLOGICAL INFORMATION** #### Information on toxicological effects Inhalation of vapours may cause drowsiness and dizziness. This may be accompanied by narcosis, reduced alertness, loss of reflexes, lack of coordination and vertigo. Limited evidence or practical experience suggests that the material may produce irritation of the respiratory system, in a significant number of individuals, following inhalation. In contrast to most organs, the lung is able to respond to a chemical insult by first removing or neutralising the irritant and then repairing the damage. The repair process, which initially evolved to protect mammalian lungs from foreign matter and antigens, may however, produce further lung damage resulting in the impairment of gas exchange, the primary function of the lungs. Respiratory tract irritation often results in an inflammatory response involving the recruitment and activation of many cell types, mainly derived from the vascular system. Inhalation hazard is increased at higher temperatures. #### Inhaled High inhaled concentrations of mixed hydrocarbons may produce narcosis characterised by nausea, vomiting and lightheadedness. Inhalation of aerosols may produce severe pulmonary oedema, pneumonitis and pulmonary haemorrhage. Inhalation of petroleum hydrocarbons consisting substantially of low molecular weight species (typically C2-C12) may produce irritation of mucous membranes, incoordination, giddiness, nausea, vertigo, confusion, headache, appetite loss, drowsiness, tremors and anaesthetic stupor. Massive exposures may produce central nervous system depression with sudden collapse and deep coma; fatalities have been recorded. Irritation of the brain and/or apnoeic anoxia may produce convulsions. Although recovery following overexposure is generally complete, cerebral micro-haemorrhage of focal post-inflammatory scarring may produce epileptiform seizures some months after the exposure. Pulmonary episodes may include chemical pneumonitis with oedema and haemorrhage. The lighter hydrocarbons may produce kidney and neurotoxic effects. Pulmonary irritancy increases with carbon chain length for paraffins and olefins. Alkenes produce pulmonary oedema at high concentrations. Liquid paraffins may produce anaesthesia and depressant actions leading to weakness, dizziness, slow and shallow respiration, unconsciousness, convulsions and death. C5-7 paraffins may also produce polyneuropathy. Aromatic hydrocarbons accumulate in lipid rich tissues (typically the brain, spinal cord and peripheral nerves) and may produce functional impairment manifested by nonspecific symptoms such as nausea, weakness, fatigue and vertigo; severe exposures may produce inebriation or unconsciousness. Many of the petroleum hydrocarbons are cardiac sensitisers and may cause ventricular fibrillations. Central nervous system (CNS) depression may include nonspecific discomfort, symptoms of giddiness, headache, dizziness, nausea, anaesthetic effects, slowed reaction time, slurred speech and may progress to unconsciousness. Serious poisonings may result in respiratory depression and may be fatal. Inhalation of aerosols (mists, fumes), generated by the material during the course of normal handling, may be damaging to the health of the individual. #### Ingestion Accidental ingestion of the material may be damaging to the health of the individual. The material produces moderate skin irritation; evidence exists, or practical experience predicts, that the material either - roduces moderate inflammation of the skin in a substantial number of individuals following direct contact, and/or - produces significant, but moderate, inflammation when applied to the healthy intact skin of animals (for up to four hours), such inflammation being present twenty-four hours or more after the end of the exposure period. Skin irritation may also be present after prolonged or repeated exposure; this may result in a form of contact dermatitis (nonallergic). The dermatitis is often characterised by skin redness (erythema) and swelling (oedema) which may progress to blistering (vesiculation), scaling and thickening of the epidermis. At the microscopic level there may be intercellular oedema of the spongy layer of the skin (spongiosis) and intracellular oedema of the epidermis. #### **Skin Contact** Repeated exposure may cause skin cracking, flaking or drying following normal handling and use. Skin contact with the material may damage the health of the individual; systemic effects may result following absorption. Open cuts, abraded or irritated skin should not be exposed to this material The material may accentuate any pre-existing dermatitis condition Entry into the blood-stream through, for example, cuts, abrasions, puncture wounds or lesions, may produce systemic injury with harmful effects. Examine the skin prior to the use of the material and ensure that any external damage is suitably protected. #### Eye Limited evidence exists, or practical experience suggests, that the material may cause eye irritation in a substantial number of individuals and/or is expected to produce significant ocular lesions which are present twenty-four hours or more after instillation into the eye(s) of experimental animals. Repeated or prolonged eye contact may cause inflammation characterised by temporary redness (similar to windburn) of the conjunctiva (conjunctivitis); temporary impairment of vision and/or other transient eye damage/ulceration may occur. ## Chronic Limited evidence suggests that repeated or long-term occupational exposure may produce cumulative health effects involving organs or biochemical systems. Repeated or prolonged exposure to mixed hydrocarbons may produce narcosis with dizziness, weakness, irritability, concentration and/or memory loss, tremor in the fingers and tongue, vertigo, olfactory disorders, constriction of visual field, paraesthesias of the extremities, weight loss and anaemia and degenerative changes in the liver and kidney. Chronic exposure by petroleum workers, to the lighter hydrocarbons, has been associated with visual disturbances, damage to the Chemwatch: **49-8088** Page **12** of **18** Issue Date: **21/04/2016**Version No: **3.1.1.1** Print Date: **07/09/2017** #### **Puma Energy Bitumen Cutback AMC1** cells. [ILO Encyclopedia] central nervous system, peripheral neuropathies (including numbness and paraesthesias), psychological and neurophysiological deficits, bone marrow toxicities (including hypoplasia possibly due to benzene) and hepatic and renal involvement. Chronic dermal exposure to petroleum hydrocarbons may result in defatting which produces localised dermatoses. Surface cracking and erosion may also increase susceptibility to infection by microorganisms. One epidemiological study of petroleum refinery workers has reported elevations in standard mortality ratios for skin cancer along with a dose-response relationship indicating an association between routine workplace exposure to petroleum or one of its constituents and skin cancer, particularly melanoma. Other studies have been unable to confirm this finding. Chronic exposure to bitumen/ asphalt fumes, over extended periods, may cause central nervous system depression, and liver and kidney changes. Chronic bitumen/ asphalt poisoning may result in a decrease in the number of white and red blood Prolonged contact with bitumens may produce irritation, inflammation, dermatitis, acne-like lesions, keratoses, melanosis and photosensitisation. Animal inhalation studies do NOT yield sufficient evidence of bitumen/ asphalt-induced lung cancer. It is generally accepted that oxidation of polycyclic aromatic hydrocarbons (PAHs) destroys their carcinogenic potential and the differing character of the polycyclic aromatic fraction of petroleum asphalt fume and those of coal tar pitch volatiles suggested a lessened potential for carcinogenicity. Inhalation of fumes of heated bitumens by guinea pigs and rats produced chronic
fibrosing pneumonitis with peribronchial adenomatosis; rats developed squamous cell metaplasias. Various extracts of steam-refined and air-refined bitumens and their mixtures, undiluted steam-refined bitumens and cracking residue bitumens, produced skin tumours following application to mouse skin. Subcutaneous injection in mice and rats, of steam- and air- refined bitumens, produced sarcomas at the sites of injection. Application of air-refined bitumens, in toluene, to the skin of mice, produced skin tumours. No tumours were produced by the undiluted bitumen. A pooled mixture of steam- and air-blown petroleum bitumen in benzene, produced tumours at the site of application to mouse skin. No significant difference was found in the health of asphalt workers and of groups of controls in a study conducted in 25 oil refineries. Other studies have not demonstrated health defects in paving and roofing operations (using asphalt-based products) and interstate trucking over asphalt highways. NOTE: The term bitumen and asphalt are often used interchangeably and have been used to describe products derived from petroleum and/ or coal. Asphalt is a native mixture of hydrocarbons which occurs as an amorphous, brownish-black solid or semisolid and results from the evaporation of the lighter hydrocarbons from petroleum and partial oxidation of the residue. Petroleum asphalts (bitumens) should therefore be differentiated from coal pitch bitumens which result from the destructive distillation of coal. The term "asphalt" originally applied to "Trinidad asphalt" which is a mined solid and is closely related to gilsonite. On occasion there are reports of epidemiological studies which have found an increased cancer mortality in workers exposed to heated bitumens and bitumen fumes. There are reports of significantly increased incidence of cancers of the mouth, oesophagus, rectum and lung. The bitumens, used by this cohort, are likely to have their origin in coal and should be distinguished from materials derived from the petroleum industry (the asphalts). Hardened bitumens/ asphalts do not normally constitute a health hazard. Mined sources of bitumens/ asphalts may present an additional hazard related to their naturally occurring content of quartz. Chronic inhalation of high levels of quartz dusts may produce silicosis, a disabling form of pneumoconiosis which may lead to scarring of the lining of the air-sacs of the lung. Chronic low level exposures to hydrogen sulfide may produce headache, fatigue, dizziness, irritability and loss of libido. These symptoms may also result from damage produced by isolated or repeated unmeasured peak high level exposures in healthy persons or those suffering from pre-existing neurological diseases. A study on long term effects showed that H2S apparently can cause continuing, sometimes unrecognised olfactory deficits. [Hirsch, A.R. - Occ. Env. Med., 1999, Vol 5, Iss 4. pp 284-287] | Puma Energy Bitumen
Cutback AMC1 | TOXICITY Not Available | IRRITATION Not Available | |---|---|---| | bitumen road making | TOXICITY Dermal (rabbit) LD50: >2000 mg/kg ^[1] Oral (rat) LD50: >5000 mg/kg ^[1] | IRRITATION Not Available | | kerosene, (petroleum),
hydrodesulfurised | TOXICITY Dermal (rabbit) LD50: >2000 mg/kg ^[1] Oral (rat) LD50: >5000 mg/kg ^[1] | IRRITATION Not Available | | kerosene | TOXICITY Dermal (rabbit) LD50: >2000 mg/kg ^[1] Inhalation (rat) LC50: >0.005 mg/L/4h ^[2] Oral (rat) LD50: >5000 mg/kg ^[2] | IRRITATION Skin (rabbit): 500 mg SEVERE | | hydrogen sulfide | TOXICITY Inhalation (rat) LC50: 0.0007 mg/L/4H ^[2] | IRRITATION Not Available | | I egend: | 1 Value obtained from Europe ECHA Registered Sub | stances - Acute toxicity 2 * Value obtained from manufacturer's SDS | Legend: 1. Value obtained from Europe ECHA Registered Substances - Acute toxicity 2.* Value obtained from manufacturer's SDS. Chemwatch: **49-8088** Version No: **3.1.1.1** Page 13 of 18 Puma Energy Bitumen Cutback AMC1 Issue Date: 21/04/2016 Print Date: 07/09/2017 Unless otherwise specified data extracted from RTECS - Register of Toxic Effect of chemical Substances WARNING: This substance has been classified by the IARC as Group 2B: Possibly Carcinogenic to Humans. #### BITUMEN ROAD MAKING No significant acute toxicological data identified in literature search. #### KEROSENE, (PETROLEUM), HYDRODESULFURISED The material may cause skin irritation after prolonged or repeated exposure and may produce a contact dermatitis (nonallergic). This form of dermatitis is often characterised by skin redness (erythema) and swelling the epidermis. Histologically there may be intercellular oedema of the spongy layer (spongiosis) and intracellular oedema of the epidermis. #### for petroleum: This product contains benzene which is known to cause acute myeloid leukaemia and n-hexane which has been shown to metabolize to compounds which are neuropathic. This product contains toluene. There are indications from animal studies that prolonged exposure to high concentrations of toluene may lead to hearing loss. This product contains ethyl benzene and naphthalene from which there is evidence of tumours in rodents **Carcinogenicity:** Inhalation exposure to mice causes liver tumours, which are not considered relevant to humans. Inhalation exposure to rats causes kidney tumours which are not considered relevant to humans. **Mutagenicity:** There is a large database of mutagenicity studies on gasoline and gasoline blending streams, which use a wide variety of endpoints and give predominantly negative results. All in vivo studies in animals and recent studies in exposed humans (e.g. petrol service station attendants) have shown negative results in mutagenicity assays. Reproductive Toxicity: Repeated exposure of pregnant rats to high concentrations of toluene (around or exceeding 1000 ppm) can cause developmental effects, such as lower birth weight and developmental neurotoxicity, on the foetus. However, in a two-generation reproductive study in rats exposed to gasoline vapour condensate, no adverse effects on the foetus were observed. #### KEROSENE **Human Effects:** Prolonged/ repeated contact may cause defatting of the skin which can lead to dermatitis and may make the skin more susceptible to irritation and penetration by other materials. Lifetime exposure of rodents to gasoline produces carcinogenicity although the relevance to humans has been questioned. Gasoline induces kidney cancer in male rats as a consequence of accumulation of the alpha2-microglobulin protein in hyaline droplets in the male (but not female) rat kidney. Such abnormal accumulation represents lysosomal overload and leads to chronic renal tubular cell degeneration, accumulation of cell debris, mineralisation of renal medullary tubules and necrosis. A sustained regenerative proliferation occurs in epithelial cells with subsequent neoplastic transformation with continued exposure. The alpha2-microglobulin is produced under the influence of hormonal controls in male rats but not in females and, more importantly, not in humans. The material may produce severe skin irritation after prolonged or repeated exposure, and may produce a contact dermatitis (nonallergic). This form of dermatitis is often characterised by skin redness (erythema) thickening of the epidermis. Histologically there may be intercellular oedema of the spongy layer (spongiosis) and intracellular oedema of the epidermis. Prolonged contact is unlikely, given the severity of response, but repeated exposures may produce severe ulceration. #### KEROSENE, (PETROLEUM), HYDRODESULFURISED & KEROSENE Studies indicate that normal, branched and cyclic paraffins are absorbed from the mammalian gastrointestinal tract and that the absorption of n-paraffins is inversely proportional to the carbon chain length, with little absorption above C30. With respect to the carbon chain lengths likely to be present in mineral oil, n-paraffins may be absorbed to a greater extent that iso- or cyclo-paraffins. The major classes of hydrocarbons have been shown to be well absorbed by the gastrointestinal tract in various species. In many cases, the hydrophobic hydrocarbons are ingested in association with dietary lipids. The dependence of hydrocarbon absorption on concomitant triglyceride digestion and absorption, is known as the "hydrocarbon continuum hypothesis", and asserts that a series of solubilising phases in the intestinal lumen, created by dietary triglycerides and their digestion products, afford hydrocarbons a route to the lipid phase of the intestinal absorptive cell (enterocyte) membrane. While some hydrocarbons may traverse the mucosal epithelium unmetabolised and appear as solutes in lipoprotein particles in intestinal lymph, there is evidence that most hydrocarbons partially separate from nutrient lipids and undergo metabolic transformation in the enterocyte. The enterocyte may play a major role in determining the proportion of an absorbed hydrocarbon that, by escaping initial biotransformation, becomes available for deposition in its unchanged form in peripheral tissues such as adipose tissue, or in the liver. #### For "kerosenes" day 7 had resolved. Acute toxicity: Oral LD50s for three kerosenes (Jet A, CAS No. 8008-20-6 and CAS No. 64742-81-0) ranged from > 2 to >20 g/kg The dermal LD50s of the same three kerosenes were all >2.0 g/kg. Inhalation LC50 values in Sprague-Dawley rats for straight run kerosene (CAS No. 8008-20-6) and hydrodesulfurised kerosene (CAS No. 64742-81-0) were reported to be > 5 and > 5.2 mg/l, respectively. No mortalities in rats were reported in rats when exposed for eight hours to saturated vapor of deodorised kerosene (probably a desulfurised
kerosene). Six hour exposures of cats to the same material produced an LC50 of >6.4 mg/l # KEROSENE, (PETROLEUM), HYDRODESULFURISED & KEROSENE When tested in rabbits for skin irritation, straight run kerosene (CAS No. 8008-20-6) produced "moderate" to "severe" irritation. Six additional skin irritation studies on a range of kerosenes produced "mild" to "severe" irritation. An eye irritation in rabbits of straight run kerosene (CAS No. 8008-20-6) produced Draize scores of 0.7 and 2.0 (unwashed and washed eyes) at 1 hour. By 24 hours, the Draize scores had returned to zero. Eye irritation studies have also been reported for hydrodesulfurized kerosene and jet fuel. These materials produced more irritation in the unwashed eyes at 1 hour than had the straight run kerosene. The eye irritation persisted longer than that seen with straight run kerosene, but by Straight run kerosene (CAS No. 8008-20-6), Jet A, and hydrodesulfurized kerosene (CAS No. 64742-81-0) have not produced sensitisation when tested in guinea pigs Repeat-Dose toxicity: Multiple repeat-dose toxicity studies have been reported on a variety of kerosenes or jet fuels. When applied dermally, kerosenes and jet fuels have been shown to produce dermal and systemic effects #### Continued... #### **Puma Energy Bitumen Cutback AMC1** Print Date: 07/09/2017 Dose levels of 200, 1000 and 2000 mg/kg of a straight run kerosene (CAS No. 8008-20-6) were applied undiluted to the skin of male and female New Zealand white rabbits The test material was applied 3x/week for 28 days. One male and one female in the 2000 mg/kg dose group found dead on days 10 and 24 respectively were thought to be treatment-related. Clinical signs that were considered to be treatment-related included: thinness, nasal discharge, lethargy, soiled anal area, anal discharge, wheezing. The high dose group appeared to have a treatment related mean body weight loss when compared to controls. Dose-related skin irritation was observed, ranging from "slight" to "moderate" in the low and high dose groups, respectively. Other treatment-related dermal findings included cracked, flaky and/or leathery skin, crusts and/or hair loss. Reductions in RBC, haemoglobin and haematocrit were seen in the male dose groups. There were no treatment related effects on a variety of clinical chemistry values. Absolute and relative weights for a number of organs were normal, with the following exceptions that were judged to be treatment-related: - increased relative heart weights for the mid- and high- dose males and females, - increased absolute and relative spleen weights in treated females, and - differences in absolute and relative adrenal weights in both male and female treated animals (considered to be stressrelated and therefore, indirectly related to treatment). Gross necropsy findings were confined largely to the skin. Enlarged spleens were seen in the female groups. Microscopic examination of tissues taken at necropsy found proliferative inflammatory changes in the treated skin of all male and female animals in the high dose group. These changes were, in the majority of animals, accompanied by an increase in granulopoiesis of the bone marrow. Four of six high dose males had testicular changes (multifocal or diffuse tubular hypoplasia) that were considered by the study authors to be secondary to the skin and/or weight changes. In a different study, hydrodesulfurised kerosene was tested in a thirteen-week dermal study using Sprague-Dawley rats. Test material was applied 5x/week to the skin of male and female rats at dose levels of 165, 330 and 495 mg/kg. Aside from skin irritation at the site of application, there were no treatment-related clinical signs during the study. Screening of all animals using a functional observation battery (FOB) did not find any substance-related effects. Opthalomological examination of all animals also found no treatment-related effects. There were no treatment-related effects on growth rates, hematological or clinical chemical values, or absolute or relative organ weights. Microscopic examination of tissues from animals surviving to termination found no treatment-related changes, with the exception of a minimal degree of a proliferative and inflammatory changes in the skin. A hydrodesulfurised middle distillate (CAS no. 64742-80-9) has also been tested in a four week inhalation study. In the study. Sprague-Dawley rats were exposed to a nominal concentration of 25mg/m3 kerosene. Exposures were for approximately 6 hr/day, five days each week for four consecutive weeks. There were no treatment-related effects on clinical condition, growth rate, absolute or relative organ weights, or any of the hematological or clinical chemistry determinations. Microscopic examination found no treatment-related changes observed in any tissues. Carcinogenicity: In addition to the repeat-dose studies discussed above, a number of dermal carcinogenicity studies have been performed on kerosenes or jet fuels. .Following the discovery that hydrodesulfurised (HDS) kerosene caused skin tumors in lifetime mouse skin painting studies, the role of dermal irritation in tumor formation was extensively studied. HDS kerosene proved to be a mouse skin tumor promoter rather than initiator, and this promotion required prolonged dermal irritation. If the equivalent dose of kerosene was applied to the skin in manner that did not cause significant skin irritation (eg, dilution with a mineral oil) no skin tumors occurred . Dermal bioavailability studies in mice confirmed that the reduced irritation seen with samples in mineral oil was not due to decreased skin penetration . The effect of chronic acanthosis on the dermal tumorigenicity of a hydrodesulfurised kerosene was studied and the author concluded that hyperplasia was essential for tumor promotion. However, the author also concluded that subacute inflammation did not appear to be a significant factor A sample of a hydrodesulfurised kerosene has been tested in an initiation-promotion assay in male CD-1 mice . Animal survivals were not effected by exposure to the kerosene. The study's authors concluded that the kerosene was not an initiator but it did show tumor promoting activity. In-Vitro (Genotoxicity): The potential in vitro genotoxicities of kerosene and jet fuel have been evaluated in a variety of studies. Standard Ames assays on two kerosene samples and a sample of Jet A produced negative results with/without activation. Modified Ames assays on four kerosenes also produced negative results (with/without activation) except for one positive assay that occurred with activation . The testing of five kerosene and jet fuel samples in mouse lymphoma assays produced a mixture of negative and positive results . Hydrodesulfurized kerosene tested in a sister chromatid exchange assay produced negative results (with/without activation) In-Vivo Genotoxicity: Multiple in vivo genotoxicity studies have been done on a variety of kerosene-based materials. Four samples of kerosene were negative and a sample of Jet A was positive in in vivo bone marrow cytogenetic tests in Sprague-Dawley rats . One of the kerosene samples produced a positive response in male mice and negative results in females when tested in a sister chromatid exchange assay . Both deodorised kerosene and Jet A samples produced negative results in dominant lethal assays. The kerosene was administered to both mice and rats intraperitoneally, while the jet fuel was administered only to mice via inhalation. Reproductive/Developmental Toxicity Either 0, 20, 40 or 60% (v/v) kerosene in mineral oil was applied to the skin of the rats. The dose per body weight equivalents were 0, 165, 330 and 494 mg/kg. Test material was applied daily, 7 days/week from 14 days premating through 20 days of gestation. There were no treatment-related effects on mortality and no clinical signs of toxicity were observed. There were no compound-related effects on any of the reproductive/developmental parameters. The authors concluded that the no observable effect level (NOEL) for reproductive/developmental toxicity of HDS kerosene under the treatment conditions of the study was 494 mg/kg/day. Developmental toxicity screening studies on a kerosene and a sample of Jet A have been reported. There were no compound-related deaths in either study. While kerosene produced no clinical signs, the jet fuel produced a dose-related eye irritation (or infection). The signs of irritation lasted from 2 to 8 days with most animals showing signs for 3 days. Neither of the test materials had an effect on body weights or food consumption. Examination of offspring at delivery did not reveal any treatment-related abnormalities, soft tissue changes or skeletal abnormalities. The sex ratio of the fetuses was also unaffected by treatment with either of the compounds. **Acute Toxicity** Carcinogenicity Chemwatch: 49-8088 Page 15 of 18 Issue Date: 21/04/2016 Version No: 3.1.1.1 Print Date: 07/09/2017 #### **Puma Energy Bitumen Cutback AMC1** | Skin
Irritation/Corrosion | ✓ | Reproductivity | 0 | |-----------------------------------|----------|-----------------------------|----------| | Serious Eye
Damage/Irritation | 0 | STOT - Single
Exposure | ✓ | | Respiratory or Skin sensitisation | 0 | STOT - Repeated
Exposure | 0 | | Mutagenicity | 0 | Aspiration Hazard | ~ | 🗶 – Data available but does not fill the criteria for classification ✓ – Data available to make classification Not Available to make classification #### **SECTION 12 ECOLOGICAL INFORMATION** #### **Toxicity** | Puma Energy Bitumen
Cutback AMC1 | ENDPOINT | TEST DURATION (HR) | SPECIES | VALUE | SOURCE | |-------------------------------------|------------------|--|--
---------------------------|------------------| | | Not
Available | Not Available | Not Available | Not
Available | Not
Available | | | ENDPOINT | TEST DURATION (HR) | SPECIES | VALUE | SOURCE | | bitumen road making | Not
Available | Not Available | Not Available | Not
Available | Not
Available | | kerosene, (petroleum), | ENDPOINT | TEST DURATION (HR) | SPECIES | VALUE | SOURCE | | hydrodesulfurised | NOEC | 3072 | Fish | =1mg/L | 1 | | | ENDPOINT | TEST DURATION (HR) | SPECIES | VALUE | SOURCE | | kerosene | Not
Available | Not Available | Not Available | Not
Available | Not
Available | | | ENDPOINT | TEST DURATION (HR) | SPECIES | VALUE | SOURCE | | | LC50 | 96 | Fish | <0.002mg/L | 4 | | hydrogen sulfide | EC50 | 48 | Crustacea | 0.062mg/L | 4 | | | NOEC | 3960 | Fish | 0.0004mg/L | 5 | | Legend: | Toxicity 3. EF | PIWIN Suite V3.12 (QSAR) - Aquatic
FOC Aquatic Hazard Assessment Da | ECHA Registered Substances - Ecoto
Toxicity Data (Estimated) 4. US EPA,
tta 6. NITE (Japan) - Bioconcentration i | Ecotox database - Aquatic | Toxicity | Toxic to aquatic organisms. Do NOT allow product to come in contact with surface waters or to intertidal areas below the mean high water mark. Do not contaminate water when cleaning equipment or disposing of equipment wash-waters. Wastes resulting from use of the product must be disposed of on site or at approved waste sites. May cause long-term adverse effects in the aquatic environment. When spilled this product may act as a typical oil, causing a film, sheen, emulsion or sludge at or beneath the surface of the body of water. The oil film on water surface may physically affect the aquatic organisms, due to the interruption of the oxygen transfer between the air and the water Oils of any kind can cause: - redrowning of water-fowl due to lack of buoyancy, loss of insulating capacity of feathers, starvation and vulnerability to predators due to lack of mobility - ▶ lethal effects on fish by coating gill surfaces, preventing respiration - asphyxiation of benthic life forms when floating masses become engaged with surface debris and settle on the bottom and - adverse aesthetic effects of fouled shoreline and beaches In case of accidental releases on the soil, a fine film is formed on the soil, which prevents the plant respiration process and the soil particle saturation. It may cause deep water infestation. DO NOT discharge into sewer or waterways. #### Persistence and degradability | Ingredient | Persistence: Water/Soil | Persistence: Air | |------------------|-------------------------|------------------| | hydrogen sulfide | LOW | LOW | #### **Bioaccumulative potential** Page 16 of 18 #### **Puma Energy Bitumen Cutback AMC1** Issue Date: **21/04/2016**Print Date: **07/09/2017** | Ingredient | Bioaccumulation | |---|----------------------| | kerosene, (petroleum),
hydrodesulfurised | LOW (BCF = 159) | | hydrogen sulfide | LOW (LogKOW = 0.229) | #### Mobility in soil | Ingredient | Mobility | |------------------|------------------| | hydrogen sulfide | LOW (KOC = 14.3) | #### **SECTION 13 DISPOSAL CONSIDERATIONS** #### Waste treatment methods Legislation addressing waste disposal requirements may differ by country, state and/ or territory. Each user must refer to laws operating in their area. In some areas, certain wastes must be tracked. A Hierarchy of Controls seems to be common - the user should investigate: - ▶ Reduction - Reuse - ▶ Recycling - ► Disposal (if all else fails) # Product / Packaging disposal This material may be recycled if unused, or if it has not been contaminated so as to make it unsuitable for its intended use. If it has been contaminated, it may be possible to reclaim the product by filtration, distillation or some other means. Shelf life considerations should also be applied in making decisions of this type. Note that properties of a material may change in use, and recycling or reuse may not always be appropriate. - ▶ DO NOT allow wash water from cleaning or process equipment to enter drains. - It may be necessary to collect all wash water for treatment before disposal. - ▶ In all cases disposal to sewer may be subject to local laws and regulations and these should be considered first. - ▶ Where in doubt contact the responsible authority. - ▶ Recycle wherever possible. - Consult manufacturer for recycling options or consult local or regional waste management authority for disposal if no suitable treatment or disposal facility can be identified. - Dispose of by: burial in a land-fill specifically licensed to accept chemical and / or pharmaceutical wastes or Incineration in a licensed apparatus (after admixture with suitable combustible material). - ▶ Decontaminate empty containers. Observe all label safeguards until containers are cleaned and destroyed. #### **SECTION 14 TRANSPORT INFORMATION** #### **Labels Required** #### **Marine Pollutant** HAZCHEM 2Y #### Land transport (ADG) | UN number | 3256 | | | |------------------------------|---|--|--| | UN proper shipping name | ELEVATED TEMPERATURE LIQUID, FLAMMABLE, N.O.S. with flash point above 60°C, at or above its flash point (contains bitumen road making, kerosene, (petroleum), hydrodesulfurised and kerosene) | | | | Transport hazard class(es) | Class 3 Subrisk Not Applicable | | | | Packing group | III | | | | Environmental hazard | Environmentally hazardous | | | | Special precautions for user | Special provisions 274 Limited quantity 0 | | | Version No: 3.1.1.1 #### **Puma Energy Bitumen Cutback AMC1** Issue Date: **21/04/2016**Print Date: **07/09/2017** #### Air transport (ICAO-IATA/DGR) | • • | | | | |---------------------------------|--|----------------|--| | UN number | 3256 | | | | UN proper shipping name | Elevated temperature liquid, flammable, n.o.s. * with flash point above 60°C, at or above its flash point (contains bitumen road making,kerosene, (petroleum), hydrodesulfurised and kerosene) | | | | Transport hazard
class(es) | ICAO/IATA Class 3 ICAO / IATA Subrisk Not Applicable | | | | | ERG Code 3L | | | | Packing group | III | | | | Environmental hazard | Environmentally hazardous | | | | | Special provisions | Not Applicable | | | | Cargo Only Packing Instructions | Forbidden | | | | Cargo Only Maximum Qty / Pack | Forbidden | | | Special precautions
for user | Passenger and Cargo Packing Instructions | Forbidden | | | | Passenger and Cargo Maximum Qty / Pack | Forbidden | | | | Passenger and Cargo Limited Quantity Packing Instructions | Forbidden | | | | Passenger and Cargo Limited Maximum Qty / Pack | Forbidden | | #### Sea transport (IMDG-Code / GGVSee) | UN number | 3256 | | | |---------------------------------|--|--|--| | UN proper shipping name | ELEVATED TEMPERATURE LIQUID, FLAMMABLE, N.O.S. with flashpoint above 60°C, at or above its flash point (contains bitumen road making, kerosene, (petroleum), hydrodesulfurised and kerosene) | | | | Transport hazard class(es) | IMDG Class 3 IMDG Subrisk Not Applicable | | | | Packing group | III | | | | Environmental hazard | Marine Pollutant | | | | Special precautions
for user | EMS Number F-E , S-D Special provisions 274 Limited Quantities 0 | | | #### Transport in bulk according to Annex II of MARPOL and the IBC code Not Applicable #### **SECTION 15 REGULATORY INFORMATION** #### Safety, health and environmental regulations / legislation specific for the substance or mixture #### BITUMEN ROAD MAKING(8052-42-4) IS FOUND ON THE FOLLOWING REGULATORY LISTS Australia Exposure Standards Australia Inventory of Chemical Substances (AICS) Australia Hazardous Substances Information System - Consolidated Lists International Agency for Research on Cancer (IARC) - Agents Classified by the IARC Monographs Australia Hazardous Substances Information System - Consolidated Lists Australia Inventory of Chemical Substances (AICS) KEROSENE, (PETROLEUM), HYDRODESULFURISED(64742-81-0) IS FOUND ON THE FOLLOWING REGULATORY LISTS ### KEROSENE(8008-20-6) IS FOUND ON THE FOLLOWING REGULATORY LISTS Australia Exposure Standards Australia Inventory of Chemical Substances (AICS) Australia Hazardous Substances Information System - Consolidated Lists International Agency for Research on Cancer (IARC) - Agents Classified by the IARC Monographs #### HYDROGEN SULFIDE(7783-06-4) IS FOUND ON THE FOLLOWING REGULATORY LISTS Australia Exposure Standards Australia Inventory of Chemical Substances (AICS) Australia Hazardous Substances Information System - Consolidated Lists International Air Transport Association (IATA) Dangerous Goods Regulations - Prohibited List Passenger and Cargo Aircraft National Inventory Status Chemwatch: 49-8088 Page 18 of 18 Issue Date: 21/04/2016 Version No: 3.1.1.1 Print Date: 07/09/2017 #### **Puma Energy Bitumen Cutback AMC1** | Australia - AICS | Y | | |----------------------------------|---|--| | Canada - DSL | Υ | | | Canada - NDSL | N (kerosene; hydrogen sulfide; bitumen road making; kerosene, (petroleum), hydrodesulfurised) | | | China - IECSC | Y | | | Europe - EINEC /
ELINCS / NLP | Υ | | | Japan - ENCS | N (hydrogen sulfide; bitumen road making) | | | Korea - KECI | Y | | | New Zealand - NZIoC | Y | | | Philippines -
PICCS | Y | | | USA - TSCA | Y | | | Legend: | Y = All ingredients are on the inventory N = Not determined or one or more ingredients are not on the inventory and are not exempt from listing(see specific ingredients in brackets) | | #### **SECTION 16 OTHER INFORMATION** #### Other information Classification of the preparation and its individual components has drawn on official and authoritative sources as well as independent review by the Chemwatch Classification committee using available literature references. The SDS is a Hazard Communication tool and should be used to assist in the Risk Assessment. Many factors determine whether the reported Hazards are Risks in the workplace or other settings. Risks may be determined by reference to Exposures Scenarios. Scale of use, frequency of use and current or available engineering controls must be considered. #### **Definitions and abbreviations** PC-TWA: Permissible Concentration-Time Weighted Average PC-STEL: Permissible Concentration-Short Term Exposure Limit IARC: International Agency for Research on Cancer ACGIH: American Conference of Governmental Industrial Hygienists STEL: Short Term Exposure Limit TEEL: Temporary Emergency Exposure Limit。 IDLH: Immediately Dangerous to Life or Health Concentrations OSF: Odour Safety Factor NOAEL :No Observed Adverse Effect Level LOAEL: Lowest Observed Adverse Effect Level TLV: Threshold Limit Value LOD: Limit Of Detection OTV: Odour Threshold Value BCF: BioConcentration Factors BEI: Biological Exposure Index This document is copyright. Apart from any fair dealing for the purposes of private study, research, review or criticism, as permitted under the Copyright Act, no part may be reproduced by any process without written permission from CHEMWATCH. TEL (+61 3) 9572 4700.