

Puma Solvent Degreaser Puma Energy Australia

Puma Energy Australia
Chemwatch: 12-49243

Version No: **6.1**Safety Data Sheet according to WHS Regulations (Hazardous Chemicals) Amendment 2020 and ADG requirements

Chemwatch Hazard Alert Code: 2

Issue Date: **02/06/2023** Print Date: **02/06/2023** L.GHS.AUS.EN.E

SECTION 1 Identification of the substance / mixture and of the company / undertaking

Product Identifier				
Product name	Puma Solvent Degreaser			
Chemical Name	Not Applicable			
Synonyms	Not Available			
Proper shipping name	KEROSENE (contains naphtha petroleum, heavy, hydrodesulfurised)			
Chemical formula	Not Applicable			
Other means of identification	Not Available			

Relevant identified uses of the substance or mixture and uses advised against

Relevant identified uses	Fast evaporating, no residue solvent Degreaser.
Neievant identified uses	Use according to manufacturer's directions.

Details of the manufacturer or supplier of the safety data sheet

Registered company name	Puma Energy Australia		
Address	365 Macarthur Avenue Hamilton QLD 4007 Australia		
Telephone	1300 723 706		
Fax	1300 723 321		
Website	www.Pumaenergy.com		
Email	PumaAu-Safety@pumaenergy.com		

Emergency telephone number

Association / Organisation	Puma Energy Australia	CHEMWATCH EMERGENCY RESPONSE (24/7)	
Emergency telephone numbers	1800 24 88 66 (Puma Energy Bitumen Technical Helpline)	+61 1800 951 288	
Other emergency telephone numbers	1800 24 88 66 (Puma Energy Bitumen Technical Helpline)	+61 3 9573 3188	

Once connected and if the message is not in your preferred language then please dial 01

SECTION 2 Hazards identification

Chamwatah Hazard Batings

Classification of the substance or mixture

Chemwatth na	Zaru No	aunys		
		Min	Max	
Flammability	2			
Toxicity	1			0 = Minimum
Body Contact	2		- 1	1 = Low
Reactivity	1			2 = Moderate
Chronic	2			3 = High 4 = Extreme

Poisons Schedule	S5
Classification [1]	Flammable Liquids Category 3, Aspiration Hazard Category 1, Serious Eye Damage/Eye Irritation Category 2A, Specific Target Organ Toxicity - Single Exposure (Narcotic Effects) Category 3, Carcinogenicity Category 2, Hazardous to the Aquatic Environment Long-Term Hazard Category 2
Legend:	1. Classified by Chemwatch; 2. Classification drawn from HCIS; 3. Classification drawn from Regulation (EU) No 1272/2008 - Annex VI

Label elements

Issue Date: **02/06/2023**Print Date: **02/06/2023**

Hazard pictogram(s)

Signal word

Danger

Hazard statement(s)

AUH066	Repeated exposure may cause skin dryness and cracking.		
H226	Flammable liquid and vapour.		
H304	May be fatal if swallowed and enters airways.		
H319	Causes serious eye irritation.		
H336	May cause drowsiness or dizziness.		
H351	Suspected of causing cancer.		
H411	Toxic to aquatic life with long lasting effects.		

Precautionary statement(s) Prevention

Obtain special instructions before use.
Keep away from heat, hot surfaces, sparks, open flames and other ignition sources. No smoking.
Use only a well-ventilated area.
Wear protective gloves, protective clothing, eye protection and face protection.
Ground and bond container and receiving equipment.
Use explosion-proof electrical/ventilating/lighting/intrinsically safe equipment.
Use non-sparking tools.
Take action to prevent static discharges.
Avoid breathing mist/vapours/spray.
Avoid release to the environment.
Wash all exposed external body areas thoroughly after handling.

Precautionary statement(s) Response

	-p
P301+P310	IF SWALLOWED: Immediately call a POISON CENTER/doctor/physician/first aider.
P331	Do NOT induce vomiting.
P308+P313	IF exposed or concerned: Get medical advice/ attention.
P370+P378	In case of fire: Use alcohol resistant foam or normal protein foam to extinguish.
P305+P351+P338	IF IN EYES: Rinse cautiously with water for several minutes. Remove contact lenses, if present and easy to do. Continue rinsing.
P312	Call a POISON CENTER/doctor/physician/first aider/if you feel unwell.
P337+P313	If eye irritation persists: Get medical advice/attention.
P391	Collect spillage.
P303+P361+P353	IF ON SKIN (or hair): Take off immediately all contaminated clothing. Rinse skin with water [or shower].
P304+P340	IF INHALED: Remove person to fresh air and keep comfortable for breathing.

Precautionary statement(s) Storage

	-
P403+P235	Store in a well-ventilated place. Keep cool.
P405	Store locked up.

Precautionary statement(s) Disposal

P501 Dispose of contents/container to authorised hazardous or special waste collection point in accordance with any local regulation.

SECTION 3 Composition / information on ingredients

Substances

See section below for composition of Mixtures

Mixtures

CAS No	%[weight]	Name
64742-82-1.	98	naphtha petroleum, heavy, hydrodesulfurised
Not Available		also contains
95-63-6	<10	1.2.4-trimethyl benzene
108-67-8	<10	1.3.5-trimethyl benzene
91-20-3	<10	naphthalene
1330-20-7	<10	xylene

Legend

1. Classified by Chemwatch; 2. Classification drawn from HCIS; 3. Classification drawn from Regulation (EU) No 1272/2008 - Annex VI; 4.

Puma Solvent Degreaser

Issue Date: 02/06/2023 Print Date: 02/06/2023

Classification drawn from C&L: * EU IOELVs available

SECTION 4 First aid measures

Description of first aid measures If this product comes in contact with the eyes: Immediately hold eyelids apart and flush the eye continuously with running water. • Ensure complete irrigation of the eye by keeping eyelids apart and away from eye and moving the eyelids by occasionally lifting the upper **Eye Contact** and lower lids Continue flushing until advised to stop by the Poisons Information Centre or a doctor, or for at least 15 minutes. Transport to hospital or doctor without delay ▶ Removal of contact lenses after an eye injury should only be undertaken by skilled personnel. Immediately remove all contaminated clothing, including footwear. **Skin Contact** Flush skin and hair with running water (and soap if available). Seek medical attention in event of irritation. If fumes or combustion products are inhaled remove from contaminated area. Lay patient down. Keep warm and rested. Prostheses such as false teeth, which may block airway, should be removed, where possible, prior to initiating first aid procedures Inhalation Apply artificial respiration if not breathing, preferably with a demand valve resuscitator, bag-valve mask device, or pocket mask as trained. Perform CPR if necessary ► Transport to hospital, or doctor If swallowed do **NOT** induce vomiting If vomiting occurs, lean patient forward or place on left side (head-down position, if possible) to maintain open airway and prevent aspiration. Observe the patient carefully. Never give liquid to a person showing signs of being sleepy or with reduced awareness; i.e. becoming unconscious Give water to rinse out mouth, then provide liquid slowly and as much as casualty can comfortably drink

Indication of any immediate medical attention and special treatment needed

vomitus.

Seek medical advice. Avoid giving milk or oils. Avoid giving alcohol.

Any material aspirated during vomiting may produce lung injury. Therefore emesis should not be induced mechanically or pharmacologically. Mechanical means should be used if it is considered necessary to evacuate the stomach contents; these include gastric lavage after endotracheal intubation. If spontaneous vomiting has occurred after ingestion, the patient should be monitored for difficult breathing, as adverse effects of aspiration into the lungs may be delayed up to 48 hours. Treat symptomatically

If spontaneous vomiting appears imminent or occurs, hold patient's head down, lower than their hips to help avoid possible aspiration of

SECTION 5 Firefighting measures

Ingestion

Extinguishing media

- ▶ Foam
- Dry chemical powder.
- ► BCF (where regulations permit).
- Carbon dioxide
- Water spray or fog Large fires only.

Special hazards arising from the substrate or mixture

Fire Fighting

Fire Incompatibility Avoid contamination with oxidising agents i.e. nitrates, oxidising acids, chlorine bleaches, pool chlorine etc. as ignition may result

Advice for firefighters

- Alert Fire Brigade and tell them location and nature of hazard.
- May be violently or explosively reactive.
- Wear breathing apparatus plus protective gloves.
- Prevent, by any means available, spillage from entering drains or water course. If safe, switch off electrical equipment until vapour fire hazard removed.
- ▶ Use water delivered as a fine spray to control fire and cool adjacent area.
- Avoid spraying water onto liquid pools.
 - ▶ DO NOT approach containers suspected to be hot.
 - Cool fire exposed containers with water spray from a protected location.
 - If safe to do so, remove containers from path of fire.

Liquid and vapour are flammable.

- Moderate fire hazard when exposed to heat or flame.
- Vapour forms an explosive mixture with air.
- Moderate explosion hazard when exposed to heat or flame.
- Vapour may travel a considerable distance to source of ignition.
- Heating may cause expansion or decomposition leading to violent rupture of containers.
- On combustion, may emit toxic fumes of carbon monoxide (CO).

Combustion products include:

carbon monoxide (CO)

carbon dioxide (CO2) other pyrolysis products typical of burning organic material

HAZCHEM

SECTION 6 Accidental release measures

Fire/Explosion Hazard

Chemwatch: **12-49243**Version No: **6.1**

Page 4 of 16

Puma Solvent Degreaser

Issue Date: **02/06/2023**Print Date: **02/06/2023**

See section 8

Environmental precautions

See section 12

Methods and material for containment and cleaning up

Minor Spills

► Remove all ignition sources

- Clean up all spills immediately.
- Avoid breathing vapours and contact with skin and eyes.
- ▶ Control personal contact with the substance, by using protective equipment.
- Contain and absorb small quantities with vermiculite or other absorbent material.
- Wipe up
- Collect residues in a flammable waste container.

Chemical Class: aromatic hydrocarbons

For release onto land: recommended sorbents listed in order of priority.

SORBENT TYPE	RANK	APPLICATION	COLLECTION	LIMITATIONS
-----------------	------	-------------	------------	-------------

LAND SPILL - SMALL

Feathers - pillow	1	throw	pitchfork	DGC, RT
cross-linked polymer - particulate	2	shovel	shovel	R,W,SS
cross-linked polymer- pillow	2	throw	pitchfork	R, DGC, RT
sorbent clay - particulate	3	shovel	shovel	R, I, P,
treated clay/ treated natural organic - particulate	3	shovel	shovel	R, I
wood fibre - pillow	4	throw	pitchfork	R, P, DGC, RT

LAND SPILL - MEDIUM

cross-linked polymer -particulate	1	blower	skiploader	R, W, SS
treated clay/ treated natural organic - particulate	2	blower	skiploader	R, I
sorbent clay - particulate	3	blower	skiploader	R, I, P
polypropylene - particulate	3	blower	skiploader	W, SS, DGC
feathers - pillow	3	throw	skiploader	DGC, RT
expanded mineral - particulate	4	blower	skiploader	R, I, W, P, DGC

Major Spills

Legend

DGC: Not effective where ground cover is dense

R; Not reusable

I: Not incinerable

P: Effectiveness reduced when rainy

RT:Not effective where terrain is rugged

SS: Not for use within environmentally sensitive sites

W: Effectiveness reduced when windy

Reference: Sorbents for Liquid Hazardous Substance Cleanup and Control;

R.W Melvold et al: Pollution Technology Review No. 150: Noyes Data Corporation 1988

- Clear area of personnel and move upwind.
- Alert Fire Brigade and tell them location and nature of hazard.
- May be violently or explosively reactive.
- Wear breathing apparatus plus protective gloves.
- Prevent, by any means available, spillage from entering drains or water course.
- Consider evacuation (or protect in place).
- ▶ No smoking, naked lights or ignition sources.
- Increase ventilation.
- Stop leak if safe to do so.
- Water spray or fog may be used to disperse /absorb vapour.
- ▶ Contain spill with sand, earth or vermiculite.
- ▶ Use only spark-free shovels and explosion proof equipment.
- Collect recoverable product into labelled containers for recycling.
- Absorb remaining product with sand, earth or vermiculite.
 Collect solid residues and seal in labelled drums for disposal
- ► Wash area and prevent runoff into drains.
- If contamination of drains or waterways occurs, advise emergency services.

Personal Protective Equipment advice is contained in Section 8 of the SDS.

SECTION 7 Handling and storage

Precautions for safe handling

The conductivity of this material may make it a static accumulator., A liquid is typically considered nonconductive if its conductivity is below 100 pS/m and is considered semi-conductive if its conductivity is below 10 000 pS/m., Whether a liquid is nonconductive or semi-conductive, the precautions are the same., A number of factors, for example liquid temperature, presence of contaminants, and anti-static additives can greatly influence the conductivity of a liquid.

Safe handling

- Containers, even those that have been emptied, may contain explosive vapours.
- ▶ Do NOT cut, drill, grind, weld or perform similar operations on or near containers.
- DO NOT allow clothing wet with material to stay in contact with skin
- · Electrostatic discharge may be generated during pumping this may result in fire.
- · Ensure electrical continuity by bonding and grounding (earthing) all equipment.
- Restrict line velocity during pumping in order to avoid generation of electrostatic discharge (<=1 m/sec until fill pipe submerged to twice its diameter, then <= 7 m/sec).
- · Avoid splash filling.

Chemwatch: 12-49243 Page 5 of 16

Puma Solvent Degreaser

Issue Date: 02/06/2023 Version No: 6.1 Print Date: 02/06/2023

- · Do NOT use compressed air for filling discharging or handling operations.
- · Wait 2 minutes after tank filling (for tanks such as those on
- · road tanker vehicles) before opening hatches or manholes.
- Wait 30 minutes after tank filling (for large storage tanks)
- · before opening hatches or manholes. Even with proper
- $\boldsymbol{\cdot}$ grounding and bonding, this material can still accumulate an · electrostatic charge. If sufficient charge is allowed to
- · accumulate, electrostatic discharge and ignition of flammable
- · air-vapour mixtures can occur. Be aware of handling
- $\boldsymbol{\cdot}$ operations that may give rise to additional hazards that result
- · from the accumulation of static charges. These include but are
- · not limited to pumping (especially turbulent flow), mixing,
- · filtering, splash filling, cleaning and filling of tanks and
- · containers, sampling, switch loading, gauging, vacuum truck
- · operations, and mechanical movements. These activities may
- · lead to static discharge e.g. spark formation. Restrict line
- · velocity during pumping in order to avoid generation of
- · electrostatic discharge (= 1 m/s until fill pipe submerged to
- · twice its diameter, then = 7 m/s). Avoid splash filling.
- \cdot Do NOT use compressed air for filling, discharging, or handling operations
- Avoid all personal contact, including inhalation.
- Wear protective clothing when risk of overexposure occurs.
- Use in a well-ventilated area.
- Prevent concentration in hollows and sumps.
- DO NOT enter confined spaces until atmosphere has been checked.
- Avoid smoking, naked lights or ignition sources.
- Avoid generation of static electricity.
- DO NOT use plastic buckets.
- Earth all lines and equipment.
- Use spark-free tools when handling.
- Avoid contact with incompatible materials.
- When handling, DO NOT eat, drink or smoke
- Keep containers securely sealed when not in use.
- Avoid physical damage to containers.
- Always wash hands with soap and water after handling.
- Work clothes should be laundered separately.
- Use good occupational work practice.
- Observe manufacturer's storage and handling recommendations contained within this SDS.
- Atmosphere should be regularly checked against established exposure standards to ensure safe working conditions.

Store in original containers in approved flammable liquid storage area.

- Store away from incompatible materials in a cool, dry, well-ventilated area.
- DO NOT store in pits, depressions, basements or areas where vapours may be trapped.
- No smoking, naked lights, heat or ignition sources.
- Storage areas should be clearly identified, well illuminated, clear of obstruction and accessible only to trained and authorised personnel adequate security must be provided so that unauthorised personnel do not have access.
- Store according to applicable regulations for flammable materials for storage tanks, containers, piping, buildings, rooms, cabinets, allowable quantities and minimum storage distances.
- Use non-sparking ventilation systems, approved explosion proof equipment and intrinsically safe electrical systems.
- Have appropriate extinguishing capability in storage area (e.g. portable fire extinguishers dry chemical, foam or carbon dioxide) and flammable gas detectors.
- Keep adsorbents for leaks and spills readily available.
- Protect containers against physical damage and check regularly for leaks.
- Observe manufacturer's storage and handling recommendations contained within this SDS.

In addition, for tank storages (where appropriate):

- Store in grounded, properly designed and approved vessels and away from incompatible materials.
- For bulk storages, consider use of floating roof or nitrogen blanketed vessels; where venting to atmosphere is possible, equip storage tank vents with flame arrestors; inspect tank vents during winter conditions for vapour/ ice build-up.
- Storage tanks should be above ground and diked to hold entire contents.

Conditions for safe storage, including any incompatibilities

Other information

Drums - 20L 200L.

- Packing as supplied by manufacturer.
- Plastic containers may only be used if approved for flammable liquid.
- Check that containers are clearly labelled and free from leaks
- For low viscosity materials (i): Drums and jerry cans must be of the non-removable head type. (ii): Where a can is to be used as an inner package, the can must have a screwed enclosure.
- For materials with a viscosity of at least 2680 cSt. (23 deg. C)
- For manufactured product having a viscosity of at least 250 cSt. (23 deg. C)
- Manufactured product that requires stirring before use and having a viscosity of at least 20 cSt (25 deg. C): (i) Removable head packaging; (ii) Cans with friction closures and (iii) low pressure tubes and cartridges may be used.
- Where combination packages are used, and the inner packages are of glass, there must be sufficient inert cushioning material in contact with inner and outer packages
- In addition, where inner packagings are glass and contain liquids of packing group I there must be sufficient inert absorbent to absorb any spillage, unless the outer packaging is a close fitting moulded plastic box and the substances are not incompatible with the plastic.

Avoid reaction with oxidising agents

For alkyl aromatics

The alkyl side chain of aromatic rings can undergo oxidation by several mechanisms. The most common and dominant one is the attack by oxidation at benzylic carbon as the intermediate formed is stabilised by resonance structure of the ring.

Storage incompatibility

Suitable container

- Following reaction with oxygen and under the influence of sunlight, a hydroperoxide at the alpha-position to the aromatic ring, is the primary oxidation product formed (provided a hydrogen atom is initially available at this position) - this product is often short-lived but may be stable dependent on the nature of the aromatic substitution; a secondary C-H bond is more easily attacked than a primary C-H bond whilst a tertiary C-H bond is even more susceptible to attack by oxygen
- Monoalkylbenzenes may subsequently form monocarboxylic acids; alkyl naphthalenes mainly produce the corresponding naphthalene carboxylic acids
- Oxidation in the presence of transition metal salts not only accelerates but also selectively decomposes the hydroperoxides.
- Hock-rearrangement by the influence of strong acids converts the hydroperoxides to hemiacetals. Peresters formed from the hydroperoxides

Page 6 of 16

Puma Solvent Degreaser

Issue Date: **02/06/2023**Print Date: **02/06/2023**

- undergo Criegee rearrangement easily.
- ► Alkali metals accelerate the oxidation while CO2 as co-oxidant enhances the selectivity.
- ▶ Microwave conditions give improved yields of the oxidation products.
- Photo-oxidation products may occur following reaction with hydroxyl radicals and NOx these may be components of photochemical smogs. Oxidation of Alkylaromatics: T.S.S Rao and Shubhra Awasthi: E-Journal of Chemistry Vol 4, No. 1, pp 1-13 January 2007
- ▶ Vigorous reactions, sometimes amounting to explosions, can result from the contact between aromatic rings and strong oxidising agents.
- Aromatics can react exothermically with bases and with diazo compounds.

SECTION 8 Exposure controls / personal protection

Control parameters

Occupational Exposure Limits (OEL)

INGREDIENT DATA

Source	Ingredient	Material name	TWA	STEL	Peak	Notes
Australia Exposure Standards	naphtha petroleum, heavy, hydrodesulfurised	White spirits	790 mg/m3	Not Available	Not Available	Not Available
Australia Exposure Standards	naphthalene	Naphthalene	10 ppm / 52 mg/m3	79 mg/m3 / 15 ppm	Not Available	Not Available
Australia Exposure Standards	xylene	Xylene (o-, m-, p- isomers)	80 ppm / 350 mg/m3	655 mg/m3 / 150 ppm	Not Available	Not Available

Emergency Limits

Ingredient	TEEL-1	TEEL-2	TEEL-3
naphtha petroleum, heavy, hydrodesulfurised	300 mg/m3	1,800 mg/m3	29500** mg/m3
1,2,4-trimethyl benzene	140 mg/m3	360 mg/m3	2,200 mg/m3
1,2,4-trimethyl benzene	Not Available	Not Available	480 ppm
1,3,5-trimethyl benzene	Not Available	Not Available	480 ppm
naphthalene	15 ppm	83 ppm	500 ppm
xylene	Not Available	Not Available	Not Available

Ingredient	Original IDLH	Revised IDLH
naphtha petroleum, heavy, hydrodesulfurised	20,000 mg/m3	Not Available
1,2,4-trimethyl benzene	Not Available	Not Available
1,3,5-trimethyl benzene	Not Available	Not Available
naphthalene	250 ppm	Not Available
xylene	900 ppm	Not Available

Occupational Exposure Banding

Ingredient	Occupational Exposure Band Rating	Occupational Exposure Band Limit	
1,2,4-trimethyl benzene	E	≤ 0.1 ppm	
1,3,5-trimethyl benzene	E	≤ 0.1 ppm	
Notes:	Occupational exposure banding is a process of assigning chemicals into specific categories or bands based on a chemical's potency and the adverse health outcomes associated with exposure. The output of this process is an occupational exposure band (OEB), which corresponds to a range of exposure concentrations that are expected to protect worker health.		

MATERIAL DATA

NOTE P: The classification as a carcinogen need not apply if it can be shown that the substance contains less than 0.01% w/w benzene (EINECS No 200-753-7). Note E shall also apply when the substance is classified as a carcinogen. This note applies only to certain complex oil-derived substances in Annex VI.

European Union (EU) List of harmonised classification and labelling hazardous substances, Table 3.1, Annex VI, Regulation (EC) No 1272/2008 (CLP) - up to the latest ATP

Exposure controls

Engineering controls are used to remove a hazard or place a barrier between the worker and the hazard. Well-designed engineering controls can be highly effective in protecting workers and will typically be independent of worker interactions to provide this high level of protection. The basic types of engineering controls are:

Process controls which involve changing the way a job activity or process is done to reduce the risk.

Enclosure and/or isolation of emission source which keeps a selected hazard "physically" away from the worker and ventilation that strategically "adds" and "removes" air in the work environment. Ventilation can remove or dilute an air contaminant if designed properly. The design of a ventilation system must match the particular process and chemical or contaminant in use.

Employers may need to use multiple types of controls to prevent employee overexposure.

For flammable liquids and flammable gases, local exhaust ventilation or a process enclosure ventilation system may be required. Ventilation

equipment should be explosion-resistant.

Air contaminants generated in the workplace possess varying "escape" velocities which, in turn, determine the "capture velocities" of fresh

Appropriate engineering controls

Air contaminants generated in the workplace possess varying "escape" velocities which, in turn, determine the "capture velocit	ies" of fresh
circulating air required to effectively remove the contaminant.	
Type of Contaminant:	Air Speed

Type of Contaminant:	Air Speed:
solvent, vapours, degreasing etc., evaporating from tank (in still air).	0.25-0.5 m/s (50-100 f/min.)
aerosols, fumes from pouring operations, intermittent container filling, low speed conveyer transfers, welding, spray drift, plating acid fumes, pickling (released at low velocity into zone of active generation)	0.5-1 m/s (100-200 f/min.)

Chemwatch: **12-49243**Version No: **6.1**

Page **7** of **16**

Puma Solvent Degreaser

Issue Date: **02/06/2023**Print Date: **02/06/2023**

direct spray, spray painting in shallow booths, drum filling, conveyer loading, crusher dusts, gas discharge (active generation into zone of rapid air motion)

1-2.5 m/s (200-500 f/min.)

Within each range the appropriate value depends on:

Lower end of the range	Upper end of the range
1: Room air currents minimal or favourable to capture	1: Disturbing room air currents
2: Contaminants of low toxicity or of nuisance value only.	2: Contaminants of high toxicity
3: Intermittent, low production.	3: High production, heavy use
4: Large hood or large air mass in motion	4: Small hood-local control only

Simple theory shows that air velocity falls rapidly with distance away from the opening of a simple extraction pipe. Velocity generally decreases with the square of distance from the extraction point (in simple cases). Therefore the air speed at the extraction point should be adjusted, accordingly, after reference to distance from the contaminating source. The air velocity at the extraction fan, for example, should be a minimum of 1-2 m/s (200-400 f/min.) for extraction of solvents generated in a tank 2 meters distant from the extraction point. Other mechanical considerations, producing performance deficits within the extraction apparatus, make it essential that theoretical air velocities are multiplied by factors of 10 or more when extraction systems are installed or used.

- · Adequate ventilation is typically taken to be that which limits the average concentration to no more than 25% of the LEL within the building, room or enclosure containing the dangerous substance.
- · Ventilation for plant and machinery is normally considered adequate if it limits the average concentration of any dangerous substance that might potentially be present to no more than 25% of the LEL. However, an increase up to a maximum 50% LEL can be acceptable where additional safeguards are provided to prevent the formation of a hazardous explosive atmosphere. For example, gas detectors linked to emergency shutdown of the process might be used together with maintaining or increasing the exhaust ventilation on solvent evaporating ovens and gas turbine enclosures
- Temporary exhaust ventilation systems may be provided for non-routine higher-risk activities, such as cleaning, repair or maintenance in tanks or other confined spaces or in an emergency after a release. The work procedures for such activities should be carefully considered. The atmosphere should be continuously monitored to ensure that ventilation is adequate and the area remains safe. Where workers will enter the space, the ventilation should ensure that the concentration of the dangerous substance does not exceed 10% of the LEL (irrespective of the provision of suitable breathing apparatus)

Individual protection measures, such as personal protective equipment

Eve and face protection

Safety glasses with side shields.

Chemical goggles.

Contact lenses may pose a special hazard; soft contact lenses may absorb and concentrate irritants. A written policy document, describing the wearing of lenses or restrictions on use, should be created for each workplace or task. This should include a review of lens absorption and adsorption for the class of chemicals in use and an account of injury experience. Medical and first-aid personnel should be trained in their removal and suitable equipment should be readily available. In the event of chemical exposure, begin eye irrigation immediately and remove contact lens as soon as practicable. Lens should be removed at the first signs of eye redness or irritation - lens should be removed in a clean environment only after workers have washed hands thoroughly. [CDC NIOSH Current Intelligence Bulletin 59], [AS/NZS 1336 or national equivalent]

Skin protection

See Hand protection below

- ► Wear chemical protective gloves, e.g. PVC.
- Wear safety footwear or safety gumboots, e.g. Rubber

The selection of suitable gloves does not only depend on the material, but also on further marks of quality which vary from manufacturer to manufacturer. Where the chemical is a preparation of several substances, the resistance of the glove material can not be calculated in advance and has therefore to be checked prior to the application.

The exact break through time for substances has to be obtained from the manufacturer of the protective gloves and has to be observed when making a final choice.

Personal hygiene is a key element of effective hand care. Gloves must only be worn on clean hands. After using gloves, hands should be washed and dried thoroughly. Application of a non-perfumed moisturiser is recommended.

Suitability and durability of glove type is dependent on usage. Important factors in the selection of gloves include:

- · frequency and duration of contact,
- · chemical resistance of glove material,
- · glove thickness and
- · dexterity

Select gloves tested to a relevant standard (e.g. Europe EN 374, US F739, AS/NZS 2161.1 or national equivalent).

- · When prolonged or frequently repeated contact may occur, a glove with a protection class of 5 or higher (breakthrough time greater than 240 minutes according to EN 374, AS/NZS 2161.10.1 or national equivalent) is recommended.
- When only brief contact is expected, a glove with a protection class of 3 or higher (breakthrough time greater than 60 minutes according to EN 374, AS/NZS 2161.10.1 or national equivalent) is recommended.
 Some glove polymer types are less affected by movement and this should be taken into account when considering gloves for long-term use.
- Contaminated gloves should be replaced.

 As defined in ASTM 5.730.06 in any application, gloves are rated as:
- As defined in ASTM F-739-96 in any application, gloves are rated as:
- Excellent when breakthrough time > 480 min
 Good when breakthrough time > 20 min
- Fair when breakthrough time < 20 min
- Fair when breakthrough time < 20 m
 Poor when glove material degrades
- For general applications, gloves with a thickness typically greater than 0.35 mm, are recommended.

It should be emphasised that glove thickness is not necessarily a good predictor of glove resistance to a specific chemical, as the permeation efficiency of the glove will be dependent on the exact composition of the glove material. Therefore, glove selection should also be based on consideration of the task requirements and knowledge of breakthrough times.

Glove thickness may also vary depending on the glove manufacturer, the glove type and the glove model. Therefore, the manufacturers technical data should always be taken into account to ensure selection of the most appropriate glove for the task.

Note: Depending on the activity being conducted, gloves of varying thickness may be required for specific tasks. For example:

- Thinner gloves (down to 0.1 mm or less) may be required where a high degree of manual dexterity is needed. However, these gloves are only likely to give short duration protection and would normally be just for single use applications, then disposed of.
- · Thicker gloves (up to 3 mm or more) may be required where there is a mechanical (as well as a chemical) risk i.e. where there is abrasion or puncture potential

Gloves must only be worn on clean hands. After using gloves, hands should be washed and dried thoroughly. Application of a non-perfumed moisturiser is recommended.

Hands/feet protection

Version No: 6.1 Puma Solvent Degreaser

Issue Date: **02/06/2023** Print Date: **02/06/2023**

Body protection

Other protection

See Other protection below

- Overalls
- PVC Apron.
- ▶ PVC protective suit may be required if exposure severe.
- ▶ Evewash unit
- Ensure there is ready access to a safety shower.
- Some plastic personal protective equipment (PPE) (e.g. gloves, aprons, overshoes) are not recommended as they may produce static electricity.
- For large scale or continuous use wear tight-weave non-static clothing (no metallic fasteners, cuffs or pockets).
- Non sparking safety or conductive footwear should be considered. Conductive footwear describes a boot or shoe with a sole made from a conductive compound chemically bound to the bottom components, for permanent control to electrically ground the foot an shall dissipate static electricity from the body to reduce the possibility of ignition of volatile compounds. Electrical resistance must range between 0 to 500,000 ohms. Conductive shoes should be stored in lockers close to the room in which they are worn. Personnel who have been issued conductive footwear should not wear them from their place of work to their homes and return.

Recommended material(s)

GLOVE SELECTION INDEX

Glove selection is based on a modified presentation of the:

"Forsberg Clothing Performance Index".

The effect(s) of the following substance(s) are taken into account in the *computer-generated* selection:

Puma Solvent Degreaser

Material	СРІ
TEFLON	A
BUTYL	С
BUTYL/NEOPRENE	С
HYPALON	С
NAT+NEOPR+NITRILE	С
NATURAL+NEOPRENE	С
NEOPRENE	С
NEOPRENE/NATURAL	С
NITRILE	С
NITRILE+PVC	С
PE/EVAL/PE	С
PVA	С
PVC	С
PVDC/PE/PVDC	С
VITON	С

- * CPI Chemwatch Performance Index
- A: Best Selection
- B: Satisfactory; may degrade after 4 hours continuous immersion
- C: Poor to Dangerous Choice for other than short term immersion

NOTE: As a series of factors will influence the actual performance of the glove, a final selection must be based on detailed observation. -

* Where the glove is to be used on a short term, casual or infrequent basis, factors such as "feel" or convenience (e.g. disposability), may dictate a choice of gloves which might otherwise be unsuitable following long-term or frequent use. A qualified practitioner should be consulted.

Respiratory protection

Type A-P Filter of sufficient capacity. (AS/NZS 1716 & 1715, EN 143:2000 & 149:2001, ANSI Z88 or national equivalent)

Where the concentration of gas/particulates in the breathing zone, approaches or exceeds the "Exposure Standard" (or ES), respiratory protection is required. Degree of protection varies with both face-piece and Class of filter; the nature of protection varies with Type of filter.

Required Minimum Protection Factor	Half-Face Respirator	Full-Face Respirator	Powered Air Respirator
up to 10 x ES	A-AUS P2	-	A-PAPR-AUS / Class 1 P2
up to 50 x ES	-	A-AUS / Class 1 P2	-
up to 100 x ES	-	A-2 P2	A-PAPR-2 P2 ^

^ - Full-face

A(All classes) = Organic vapours, B AUS or B1 = Acid gasses, B2 = Acid gas or hydrogen cyanide(HCN), B = Acid gas or hydrogen cyanide(HCN), E = Sulfur dioxide(SO2), G = Agricultural chemicals, K = Ammonia(NH3), Hg = Mercury, NO = Oxides of nitrogen, MB = Methyl bromide, AX = Low boiling point organic compounds(below 65 degC)

- Cartridge respirators should never be used for emergency ingress or in areas of unknown vapour concentrations or oxygen content.
- The wearer must be warned to leave the contaminated area immediately on detecting any odours through the respirator. The odour may indicate that the mask is not functioning properly, that the vapour concentration is too high, or that the mask is not properly fitted. Because of these limitations, only restricted use of cartridge respirators is considered appropriate.
- Cartridge performance is affected by humidity. Cartridges should be changed after 2 hr of continuous use unless it is determined that the humidity is less than 75%, in which case, cartridges can be used for 4 hr. Used cartridges should be discarded daily, regardless of the length of time used

SECTION 9 Physical and chemical properties

Information on basic physical and chemical properties

Appearance	Green clear liquid with aromatic odour; not miscible with water.		
Physical state	Liquid	Relative density (Water = 1)	0.8
Odour	Characteristic	Partition coefficient n-octanol / water	Not Available
Odour threshold	Not Available	Auto-ignition temperature (°C)	230
pH (as supplied)	Not Applicable	Decomposition temperature (°C)	Not Available
Melting point / freezing point (°C)	Not Available	Viscosity (cSt)	Not Available
Initial boiling point and boiling range (°C)	145-300	Molecular weight (g/mol)	Not Applicable
Flash point (°C)	>38	Taste	Not Available
Evaporation rate	Not Available	Explosive properties	Not Available
Flammability	Flammable.	Oxidising properties	Not Available
Upper Explosive Limit (%)	6	Surface Tension (dyn/cm or mN/m)	Not Available

Chemwatch: 12-49243 Version No: 6.1 Page 9 of 16

Puma Solvent Degreaser

Issue Date: **02/06/2023**Print Date: **02/06/2023**

Lower Explosive Limit (%)	1	Volatile Component (%vol)	Not Available
Vapour pressure (kPa)	0.3	Gas group	Not Available
Solubility in water	Immiscible	pH as a solution (1%)	Not Available
Vapour density (Air = 1)	4.35	VOC g/L	Not Available

SECTION 10 Stability and reactivity

Reactivity	See section 7
Chemical stability	 Unstable in the presence of incompatible materials. Product is considered stable. Hazardous polymerisation will not occur.
Possibility of hazardous reactions	See section 7
Conditions to avoid	See section 7
Incompatible materials	See section 7
Hazardous decomposition products	See section 5

SECTION 11 Toxicological information

Information on toxicological effects

Information on toxicological ef	fects
Inhaled	Limited evidence or practical experience suggests that the material may produce irritation of the respiratory system, in a significant number of individuals, following inhalation. In contrast to most organs, the lung is able to respond to a chemical insult by first removing or neutralising the irritant and then repairing the damage. The repair process, which initially evolved to protect mammalian lungs from foreign matter and antigens, may however, produce further lung damage resulting in the impairment of gas exchange, the primary function of the lungs. Respiratory tract irritation often results in an inflammatory response involving the recruitment and activation of many cell types, mainly derived from the vascular system. Central nervous system (CNS) depression may include nonspecific discomfort, symptoms of giddiness, headache, dizziness, nausea, anaesthetic effects, slowed reaction time, slurred speech and may progress to unconsciousness. Serious poisonings may result in respiratory depression and may be fatal. Acute effects from inhalation of high concentrations of vapour are pulmonary irritation, including coughing, with nausea; central nervous system depression - characterised by headache and dizziness, increased reaction time, fatigue and loss of co-ordination Inhalation of aerosols (mists, fumes), generated by the material during the course of normal handling, may be damaging to the health of the individual.
Ingestion	Swallowing of the liquid may cause aspiration of vomit into the lungs with the risk of haemorrhaging, pulmonary oedema, progressing to chemical pneumonitis; serious consequences may result. Signs and symptoms of chemical (aspiration) pneumonitis may include coughing, gasping, choking, burning of the mouth, difficult breathing, and bluish coloured skin (cyanosis).
Skin Contact	Evidence exists, or practical experience predicts, that the material either produces inflammation of the skin in a substantial number of individuals following direct contact, and/or produces significant inflammation when applied to the healthy intact skin of animals, for up to four hours, such inflammation being present twenty-four hours or more after the end of the exposure period. Skin irritation may also be present after prolonged or repeated exposure; this may result in a form of contact dermatitis (nonallergic). The dermatitis is often characterised by skin redness (erythema) and swelling (oedema) which may progress to blistering (vesiculation), scaling and thickening of the epidermis. At the microscopic level there may be intercellular oedema of the spongy layer of the skin (spongiosis) and intracellular oedema of the epidermis. The material may accentuate any pre-existing dermatitis condition Repeated exposure may cause skin cracking, flaking or drying following normal handling and use. Open cuts, abraded or irritated skin should not be exposed to this material Entry into the blood-stream through, for example, cuts, abrasions, puncture wounds or lesions, may produce systemic injury with harmful effects. Examine the skin prior to the use of the material and ensure that any external damage is suitably protected.
Еуе	Limited evidence exists, or practical experience suggests, that the material may cause eye irritation in a substantial number of individuals and/or is expected to produce significant ocular lesions which are present twenty-four hours or more after instillation into the eye(s) of experimental animals. Repeated or prolonged eye contact may cause inflammation characterised by temporary redness (similar to windburn) of the conjunctiva (conjunctivitis); temporary impairment of vision and/or other transient eye damage/ulceration may occur.
Chronic	On the basis, primarily, of animal experiments, concern has been expressed that the material may produce carcinogenic or mutagenic effects; in respect of the available information, however, there presently exists inadequate data for making a satisfactory assessment. Prolonged or repeated skin contact may cause drying with cracking, irritation and possible dermatitis following. Limited evidence suggests that repeated or long-term occupational exposure may produce cumulative health effects involving organs or biochemical systems. There is some evidence that human exposure to the material may result in developmental toxicity. This evidence is based on animal studies where effects have been observed in the absence of marked maternal toxicity, or at around the same dose levels as other toxic effects but which are not secondary non-specific consequences of the other toxic effects. Chronic solvent inhalation exposures may result in nervous system impairment and liver and blood changes. [PATTYS]

Page 10 of 16 Issue Date: 02/06/2023 Version No: 6.1 Print Date: 02/06/2023 **Puma Solvent Degreaser**

	TOXICITY	IRRITATION
	Dermal (rabbit) LD50: >3160 mg/kg ^[2]	Not Available
1,2,4-trimethyl benzene	Inhalation(Rat) LC50: 18 mg/L4h ^[2]	
	Oral (Rat) LD50: 6000 mg/kg ^[1]	
	TOXICITY	IRRITATION
	dermal (rat) LD50: >3460 mg/kg ^[1]	Eye (rabbit): 500 mg/24h mild
1,3,5-trimethyl benzene	Inhalation(Rat) LC50: 24 mg/L4h ^[2]	Eye: adverse effect observed (irritating) ^[1]
	Oral (Rat) LD50: 6000 mg/kg ^[1]	Skin (rabbit): 20 mg/24h moderate
		Skin: adverse effect observed (irritating) ^[1]
	TOXICITY	IRRITATION
	dermal (rat) LD50: >2500 mg/kg ^[2]	Eye (rabbit): 100 mg - mild
naphthalene	Inhalation(Rat) LC50: >0.4 mg/l4h ^[1]	Skin (rabbit):495 mg (open) - mild
	Oral (Rat) LD50: 490 mg/kg ^[2]	
	TOXICITY	IRRITATION
	Dermal (rabbit) LD50: >1700 mg/kg ^[2]	Eye (human): 200 ppm irritant
	Inhalation(Rat) LC50: 5000 ppm4h ^[2]	Eye (rabbit): 5 mg/24h SEVERE
xylene	Oral (Mouse) LD50; 2119 mg/kg ^[2]	Eye (rabbit): 87 mg mild
		Eye: adverse effect observed (irritating) ^[1]
		Skin (rabbit):500 mg/24h moderate
		Skin: adverse effect observed (irritating) ^[1]
Legend:	1 Value obtained from Europe ECHA Registered Substa	nces - Acute toxicity 2. Value obtained from manufacturer's SDS. Unless other

No significant acute toxicological data identified in literature search.

Studies indicate that normal, branched and cyclic paraffins are absorbed from the mammalian gastrointestinal tract and that the absorption of n-paraffins is inversely proportional to the carbon chain length, with little absorption above C30. With respect to the carbon chain lengths likely to be present in mineral oil, n-paraffins may be absorbed to a greater extent that iso- or cyclo-paraffins.

The major classes of hydrocarbons have been shown to be well absorbed by the gastrointestinal tract in various species. In many cases, the hydrophobic hydrocarbons are ingested in association with dietary lipids. The dependence of hydrocarbon absorption on concomitant triglyceride digestion and absorption is known as the "hydrocarbon continuum hypothesis", and asserts that a series of solubilising phases in the intestinal lumen, created by dietary triglycerides and their digestion products, afford hydrocarbons a route to the lipid phase of the intestinal absorptive cell (enterocyte) membrane. While some hydrocarbons may traverse the mucosal epithelium unmetabolised and appear as solutes in lipoprotein particles in intestinal lymph, there is evidence that most hydrocarbons partially separate from nutrient lipids and undergo metabolic transformation in the enterocyte. The enterocyte may play a major role in determining the proportion of an absorbed hydrocarbon that, by escaping initial biotransformation, becomes available for deposition in its unchanged form in peripheral tissues such as adipose tissue, or in the liver. For C9 aromatics (typically trimethylbenzenes - TMBs)

Acute toxicity studies (oral, dermal and inhalation routes of exposure) have been conducted in rats using various solvent products containing predominantly mixed C9 aromatic hydrocarbons (CAS RN 64742-95-6). Inhalation LC50 s range from 6,000 to 10,000 mg/m 3 for C9 aromatic naphtha and 18,000 to 24,000 mg/m3 for 1,2,4 and 1,3,5-TMB, respectively. A rat oral LD50 reported for 1,2,4-TMB is 5 grams/kg bw and a rat dermal LD50 for the C9 aromatic naphtha is >4 ml/kg bw. These data indicate that C9 aromatic solvents show that LD50/LC50 values are greater than limit doses for acute toxicity studies established under OECD test guidelines Irritation and Sensitization

NAPHTHA PETROLEUM. HEAVY. HYDRODESULFURISED Several irritation studies, including skin, eye, and lung/respiratory system, have been conducted on members of the category. The results indicate that C9 aromatic hydrocarbon solvents are mildly to moderately irritating to the skin, minimally irritating to the eye, and have the potential to irritate the respiratory tract and cause depression of respiratory rates in mice. Respiratory irritation is a key endpoint in the current occupational exposure limits established for C9 aromatic hydrocarbon solvents and trimethylbenzenes. No evidence of skin sensitization was identified. Repeated Dose Toxicity

Inhalation: The results from a subchronic (3 month) neurotoxicity study and a one-year chronic study (6 hr/day, 5 days/week) indicate that effects from inhalation exposure to C9 Aromatic Hydrocarbon Solvents on systemic toxicity are slight. A battery of neurotoxicity and neurobehavioral endpoints were evaluated in the 3-month inhalation study on C9 aromatic naphtha tested at concentrations of 0, 101, 452, or 1320 ppm (0, 500, 2,220, or 6,500 mg/m3). In this study, other than a transient weight reduction in the high exposure group (not statistically significant at termination of exposures), no effects were reported on neuropathology or neuro/behavioral parameters. The NOAEL for systemic and/or neurotoxicity was 6,500 mg/m3, the highest concentration tested. In an inhalation study of a commercial blend, rats were exposed to C9 aromatic naphtha concentrations of 0, 96, 198, or 373 ppm (0, 470, 970, 1830 mg/m3) for 6 hr/day, 5 days/week, for 12 months. Liver and kidney weights were increased in the high exposure group but no accompanying histopathology was observed in these organs.

The NOAEL was considered to be the high exposure level of 373 ppm, or 1830 mg/m3. In two subchronic rat inhalation studies, both of three months duration, rats were exposed to the individual TMB isomers (1,2,4-and 1,3,5-) to nominal concentrations of 0, 25, 100, or 250 ppm (0, 123, 492, or 1230 mg/m3). Respiratory irritation was observed at 492 (100 ppm) and 1230 mg/m3 (250 ppm) and no systemic toxicity was observed in either study. For both pure isomers, the NOELs are 25 ppm or 123 mg/m3 for respiratory irritation and 250 ppm or 1230 mg/m3 for systemic

Oral: The C9 aromatic naphtha has not been tested via the oral route of exposure. Individual TMB isomers have been evaluated in a series of repeated-dose oral studies ranging from 14 days to 3 months over a wide range of doses. The effects observed in these studies included increased liver and kidney weights, changes in blood chemistry, increased salivation, and decreased weight gain at higher doses. Organ weight changes appeared to be adaptive as they were not accompanied by histopathological effects. Blood changes appeared sporadic and without pattern. One study reported hyaline droplet nephropathy in male rats at the highest dose (1000 mg/kg bw-day), an effect that is often associated with alpha-2mu-globulin-induced nephropathy and not considered relevant to humans. The doses at which effects were detected were 100 mg/kg-bw day or above (an exception was the pilot 14 day oral study - LOAEL 150 mg/kg bw-day - but the follow up three month study had a LOAEL of 600 mg/kg/bw-day with a NOAEL of 200 mg/kg bw-day). Since effects generally were not severe and could be considered adaptive or spurious, oral exposure does not appear to pose a high toxicity hazard for pure trimethylbenzene isomers. Mutagenicity

Chemwatch: 12-49243 Page 11 of 16 Issue Date: 02/06/2023
Version No: 6.1 Print Date: 02/06/2023

Puma Solvent Degreaser

In vitro genotoxicity testing of a variety of C9 aromatics has been conducted in both bacterial and mammalian cells. In vitro point mutation tests were conducted with Salmonella typhimurium and Escherichia coli bacterial strains, as well as with cultured mammalian cells such as the Chinese hamster cell ovary cells (HGPRT assay) with and without metabolic activation. In addition, several types of in vitro chromosomal aberration tests have been performed (chromosome aberration frequency in Chinese hamster ovary and lung cells, sister chromatid exchange in CHO cells). Results were negative both with and without metabolic activation for all category members. For the supporting chemical 1,2,3-TMB, a single in vitro chromosome aberration test was weakly positive. In in vivo bone marrow cytogenetics test, rats were exposed to C9 aromatic naphtha at concentrations of 0, 153, 471, or 1540 ppm (0, 750, 2,310, or 7,560 mg/m3) 6 hr/day, for 5 days. No evidence of in vivo somatic cell genotoxicity was detected. Based on the cumulative results of these assays, genetic toxicity is unlikely for substances in the C9 Aromatic Hydrocarbon Solvents Category

Reproductive and Developmental Toxicity

Results from the three-generation reproduction inhalation study in rats indicate limited effects from C9 aromatic naphtha. In each of three generations (F0, F1 and F2), rats were exposed to High Flash Aromatic Naphtha (CAS RN 64742-95-6) via whole body inhalation at target concentrations of 0, 100, 500, or 1500 ppm (actual mean concentrations throughout the full study period were 0, 103, 495, or 1480 ppm, equivalent to 0, 505, 2430, or 7265 mg/m3 , respectively). In each generation, both sexes were exposed for 10 weeks prior to and two weeks during mating for 6 hrs/day, 5 days/wks. Female rats in the F0, F1, and F2 generation were then exposed during gestation days 0-20 and lactation days 5-21 for 6 hrs/day, 7 days/wk. The age at exposure initiation differed among generations; F0 rats were exposed starting at 9 weeks of age, F1 exposure began at 5-7 weeks, and F2 exposure began at postnatal day (PND) 22. In the F0 and F1 parental generations, 30 rats/sex /group were exposed and mated. However, in the F2 generation, 40/sex/group were initially exposed due to concerns for toxicity, and 30/sex /group were randomly selected for mating, except that all survivors were used at 1480 ppm. F3 litters were not exposed directly and were sacrificed on lactation day 21.

Systemic Effects on Parental Generations:

The F0 males showed statistically and biologically significantly decreased mean body weight by ~15% at 1480 ppm when compared with controls. Seven females died or were sacrificed in extremis at 1480 ppm. The F0 female rats in the 495 ppm exposed group had a 13% decrease in body weight gain when adjusted for initial body weight when compared to controls. The F1 parents at 1480 ppm had statistically significantly decreased mean body weights (by ~13% (females) and 22% (males)), and locomotor activity. F1 parents at 1480 ppm had increased ataxia and mortality (six females). Most F2 parents (70/80) exposed to 1480 ppm died within the first week. The remaining animals survived throughout the rest of the exposure period. At week 4 and continuing through the study, F2 parents at 1480 ppm had statistically significant mean body weights much lower than controls (~33% for males; ~28% for females); body weights at 495 ppm were also reduced significantly (by 13% in males and 15% in females). The male rats in the 495 ppm exposed group had a 12% decrease in body weight gain when adjusted for initial body weight when compared to controls. Based on reduced body weight observed, the overall systemic toxicity LOAEC is 495 ppm (2430 mg/m3). Reproductive Toxicity-Effects on Parental Generations: There were no pathological changes noted in the reproductive organs of any animal of the F0, F1, or F2 generation. No effects were reported on sperm morphology, gestational period, number of implantation sites, or post-implantation loss in any generation. Also, there were no statistically or biologically significant differences in any of the reproductive parameters, including: number of mated females, copulatory index, copulatory interval, number of females delivering a litter, number of females delivering a live litter, or male fertility in the F0 or in the F2 generation. Male fertility was statistically significantly reduced at 1480 ppm in the F1 rats. However, male fertility was not affected in the F0 or in the F2 generations; therefore, the biological significance of this change is unknown and may or may not be attributed to the test substance. No reproductive effects were observed in the F0 or F1 dams exposed to 1480 ppm (7265 mg/m3). Due to excessive mortality at the highest concentration (1480 ppm, only six dams available) in the F2 generation,, a complete evaluation is precluded. However, no clear signs of reproductive toxicity were observed in the F2 generation. Therefore, the reproductive NOAEC is considered 495 ppm (2430 mg/m3), which excludes analysis of the highest concentration due to excessive mortality.

Developmental Toxicity - Effects on Pups: Because of significant maternal toxicity (including mortality) in dams in all generations at the highest concentration (1480 ppm), effects in offspring at 1480 ppm are not reported here. No significant effects were observed in the F1 and F2 generation offspring at 103 or 495 ppm. However, in F3 offspring, body weights and body weight gain were reduced by ~ 10-11% compared with controls at 495 ppm for approximately a week (PND 14 through 21). Maternal body weight was also depressed by ~ 12% throughout the gestational period compared with controls. The overall developmental LOAEC from this study is 495 ppm (2430 mg/m3) based on the body weights reductions observed in the F3 offspring.

Conclusion: No effects on reproductive parameters were observed at any exposure concentration, although a confident assessment of the group exposed at the highest concentration was not possible. A potential developmental effect (reduction in mean pup weight and weight gain) was observed at a concentration that was also associated with maternal toxicity.

For petroleum: This product contains benzene, which can cause acute myeloid leukaemia, and n-hexane, which can be metabolized to compounds which are toxic to the nervous system. This product contains toluene, and animal studies suggest high concentrations of toluene lead to hearing loss. This product contains ethyl benzene and naphthalene, from which animal testing shows evidence of tumour formation. Cancer-causing potential: Animal testing shows inhaling petroleum causes tumours of the liver and kidney; these are however not considered to be relevant in humans.

Mutation-causing potential: Most studies involving gasoline have returned negative results regarding the potential to cause mutations, including all recent studies in living human subjects (such as in petrol service station attendants).

Reproductive toxicity: Animal studies show that high concentrations of toluene (>0.1%) can cause developmental effects such as lower birth weight and developmental toxicity to the nervous system of the foetus. Other studies show no adverse effects on the foetus. Human effects: Prolonged or repeated contact may cause defatting of the skin which can lead to skin inflammation and may make the skin more susceptible to irritation and penetration by other materials.

Animal testing shows that exposure to gasoline over a lifetime can cause kidney cancer, but the relevance in humans is questionable.

1,2,4-TRIMETHYL BENZENE 1,3,5-TRIMETHYL BENZENE

CHEMWATCH 2325 1,3,5-trimethylbenzene

....

CHEMWATCH 12171 1,2,4-trimethylbenzene

NAPHTHALENE

The material may cause skin irritation after prolonged or repeated exposure and may produce a contact dermatitis (nonallergic). This form of dermatitis is often characterised by skin redness (erythema) and swelling epidermis. Histologically there may be intercellular oedema of the spongy layer (spongiosis) and intracellular oedema of the epidermis.

WARNING: This substance has been classified by the IARC as Group 2B: Possibly Carcinogenic to Humans.

Reproductive effector in rats

XYLENE

The material may produce severe irritation to the eye causing pronounced inflammation. Repeated or prolonged exposure to irritants may produce conjunctivitis.

The substance is classified by IARC as Group 3:

NOT classifiable as to its carcinogenicity to humans.

Evidence of carcinogenicity may be inadequate or limited in animal testing.

NAPHTHA PETROLEUM, HEAVY, HYDRODESULFURISED & 1.2.4-TRIMETHYL BENZENE &

1,3,5-TRIMETHYL BENZENE

Absorption of 1,2,4-trimethylbenzene occurs after oral, inhalation, or dermal exposure. Occupationally, inhalation and dermal exposures are the most important routes of absorption although systemic intoxication from dermal absorption is not likely to occur due to the dermal irritation caused by the chemical prompting quick removal. Following oral administration of the chemical to rats, 62.6% of the dose was recovered as urinary metabolites indicating substantial absorption . 1,2,4-Trimethylbenzene is lipophilic and may accumulate in fat and fatty tissues. In the blood stream, approximately 85% of the chemical is bound to red blood cells Metabolism occurs by side-chain oxidation to form alcohols and carboxylic acids which are then conjugated with glucuronic acid, glycine, or sulfates for urinary excretion . After a single oral dose to rats of 1200 mg/kg, urinary metabolites consisted of approximately 43.2% glycine, 6.6% glucuronic, and 12.9% sulfuric acid conjugates . The two principle

metabolites excreted by rabbits after oral administration of 438 mg/kg/day for 5 days were 2,4-dimethylbenzoic acid and 3,4-dimethylhippuric acid . The major routes of excretion of 1,2,4-trimethyl- benzene are exhalation of parent compound and elimination of urinary metabolites. Half-times for urinary metabolites were reported as 9.5 hours for glycine, 22.9 hours for glucuronide, and 37.6 hours for sulfuric acid conjugates.

Page 12 of 16 **Puma Solvent Degreaser**

Issue Date: 02/06/2023

Print Date: 02/06/2023

Acute Toxicity Direct contact with liquid 1,2,4-trimethylbenzene is irritating to the skin and breathing the vapor is irritating to the respiratory tract causing pneumonitis. Breathing high concentrations of the chemical vapor causes headache, fatique, and drowsiness. In humans liquid 1,2,4trimethylbenzene is irritating to the skin and inhalation of vapor causes chemical pneumonitis. High concentrations of vapor (5000-9000 ppm) cause headache, fatigue, and drowsiness . The concentration of 5000 ppm is roughly equivalent to a total of 221 mg/kg assuming a 30 minute exposure period (see end note 1). 2. Animals - Mice exposed to 8130-9140 ppm 1,2,4-trimethylbenzene (no duration given) had loss of righting response and loss of reflexes Direct dermal contact with the chemical (no species given) causes vasodilation, erythema, and irritation (U.S. EPA). Seven of 10 rats died after an oral dose of 2.5 mL of a mixture of trimethylbenzenes in olive oil (average dose approximately 4.4 g/kg) . Rats and mice were exposed by inhalation to a coal tar distillate containing about 70% 1,3,5- and 1,2,4-trimethylbenzene; no pathological changes were noted in either species after exposure to 1800-2000 ppm for up to 48 continuous hours, or in rats after 14 exposures of 8 hours each at the same exposure levels. No effects were reported for rats exposed to a mixture of trimethyl- benzenes at 1700 ppm for 10 to 21 days Neurotoxicity 1,2,4-Trimethylbenzene depresses the central nervous system. Exposure to solvent mixtures containing the chemical causes headache, fatique, nervousness, and drowsiness. Occupationally, workers exposed to a solvent containing 50% 1,2,4-trimethylbenzene had nervousness, headaches, drowsiness, and vertigo (U.S. EPA). Headache, fatigue, and drowsiness were reported for workers exposed (no dose given) to paint thinner containing 80% 1.2.4- and 1.3.5-trimethylbenzenes

Results of the developmental toxicity study indicate that the C9 fraction caused adverse neurological effects at the highest dose (1500 ppm) tested.

Subchronic/Chronic Toxicity Long-term exposure to solvents containing 1,2,4-trimethylbenzene may cause nervousness, tension, and bronchitis. Painters that worked for several years with a solvent containing 50% 1,2,4- and 30% 1,3,5-trimethylbenzene showed nervousness, tension and anxiety, asthmatic bronchitis, anemia, and alterations in blood clotting; haematological effects may have been due to trace amounts of benzene

Rats given 1,2,4-trimethylbenzene orally at doses of 0.5 or 2.0 g/kg/day, 5 days/week for 4 weeks. All rats exposed to the high dose died and 1 rat in the low dose died (no times given); no other effects were reported. Rats exposed by inhalation to 1700 ppm of a trimethylbenzene isomeric mixture for 4 months had decreased weight gain, lymphopenia and neutrophilia.

Genotoxicity: Results of mutagenicity testing, indicate that the C9 fraction does not induce gene mutations in prokaryotes (Salmonella tymphimurium/mammalian microsome assay); or in mammalian cells in culture (in Chinese hamster ovary cells with and without activation). The C9 fraction does not does not induce chromosome mutations in Chinese hamster ovary cells with and without activation; does not induce chromosome aberrations in the bone marrow of Sprague-Dawley rats exposed by inhalation (6 hours/day for 5 days); and does not induce sister chromatid exchange in Chinese hamster ovary cells with and without activation.

Developmental/Reproductive Toxicity: A three-generation reproductive study on the C9 fraction was conducted CD rats (30/sex/group) were exposed by inhalation to the C9 fraction at concentrations of 0, 100, 500, or 1500 ppm (0, 100, 500, or 1500 mg/kg/day) for 6 hours/day, 5 days/week. There was evidence of parental and reproductive toxicity at all dose levels. Indicators of parental toxicity included reduced body weights, increased salivation, hunched posture, aggressive behavior, and death. Indicators of adverse reproductive system effects included reduced litter size and reduced pup body weight. The LOEL was 100 ppm; a no-observed-effect level was not established Developmental toxicity, including possible develop- mental neurotoxicity, was evident in rats in a 3-generation reproductive study

No effects on fecundity or fertility occurred in rats treated dermally with up to 0.3 mL/rat/day of a mixture of trimethyl- benzenes, 4-6 hours/day, 5 days/week over one generation

1,2,4-TRIMETHYL BENZENE & 1,3,5-TRIMETHYL BENZENE

Other Toxicity data is available for CHEMWATCH 12172 1.2.3-trimethylbenzene

Asthma-like symptoms may continue for months or even years after exposure to the material ends. This may be due to a non-allergic condition known as reactive airways dysfunction syndrome (RADS) which can occur after exposure to high levels of highly irritating compound. Main criteria for diagnosing RADS include the absence of previous airways disease in a non-atopic individual, with sudden onset of persistent asthma-like symptoms within minutes to hours of a documented exposure to the irritant. Other criteria for diagnosis of RADS include a reversible airflow pattern on lung function tests, moderate to severe bronchial hyperreactivity on methacholine challenge testing, and the lack of minimal lymphocytic inflammation, without eosinophilia. RADS (or asthma) following an irritating inhalation is an infrequent disorder with rates related to the concentration of and duration of exposure to the irritating substance. On the other hand, industrial bronchitis is a disorder that occurs as a result of exposure due to high concentrations of irritating substance (often particles) and is completely reversible after exposure ceases. The disorder is characterized by difficulty breathing, cough and mucus production.

1,3,5-TRIMETHYL BENZENE & NAPHTHAL ENE

The material may be irritating to the eye, with prolonged contact causing inflammation. Repeated or prolonged exposure to irritants may produce conjunctivitis.

1,3,5-TRIMETHYL BENZENE & **XYLENE**

The material may cause skin irritation after prolonged or repeated exposure and may produce a contact dermatitis (nonallergic). This form of dermatitis is often characterised by skin redness (erythema) and swelling the epidermis. Histologically there may be intercellular oedema of the spongy layer (spongiosis) and intracellular oedema of the epidermis.

Acute Toxicity	×	Carcinogenicity	✓
Skin Irritation/Corrosion	×	Reproductivity	×
Serious Eye Damage/Irritation	✓	STOT - Single Exposure	✓
Respiratory or Skin sensitisation	×	STOT - Repeated Exposure	×
Mutagenicity	×	Aspiration Hazard	✓

Legend:

★ - Data either not available or does not fill the criteria for classification

– Data available to make classification

SECTION 12 Ecological information

Toxicity

Puma Solvent Degreaser	Endpoint	Test Duration (hr)	Species	Value	Source
	Not Available	Not Available	Not Available	Not Available	Not Available
	Endpoint	Test Duration (hr)	Species	Value	Source
	EC50	72h	Algae or other aquatic plants	391mg/l	2
	EC50(ECx)	72h	Algae or other aquatic plants	391mg/l	2
	NOEC(ECx)	504h	Crustacea	0.097mg/l	2
naphtha petroleum, heavy, hydrodesulfurised	EC50	72h	Algae or other aquatic plants	0.53mg/l	2
.,	EC50	96h	Algae or other aquatic plants	0.58mg/l	2
	NOEC(ECx)	720h	Fish	0.02mg/l	2
	EC50	96h	Algae or other aquatic plants	0.277mg/l	2
	LC50	96h	Fish	0.14mg/l	2

Chemwatch: 12-49243 Page 13 of 16 Version No: 6.1

Puma Solvent Degreaser

1,2,4-trimethyl benzene	Endpoint	Test Duration (hr)	Species	Value	Source
	BCF	1344h	Fish	31-207	7
	EC50(ECx)	96h	Algae or other aquatic plants	2.356mg/l	2
	EC50	96h	Algae or other aquatic plants	2.356mg/l	2
	EC50	48h	Crustacea	ca.6.14mg/l	1
	LC50	96h	Fish	3.41mg/l	2
	Endpoint	Test Duration (hr)	Species	Value	Source
	BCF	1680h	Fish	23-342	7
	LC50	96h	Fish	5.216mg/l	2
1,3,5-trimethyl benzene	EC50	48h	Crustacea	13mg/L	5
	NOEC(ECx)	384h	Crustacea	0.257mg/l	2
	EC50	96h	Algae or other aquatic plants	3.084mg/l	2
	Endpoint	Test Duration (hr)	Species	Value	Source
	BCF	1344h	Fish	23-146	7
	EC50(ECx)	0.05h	Crustacea	<0.00001mg/l	4
naphthalene	EC50	72h	Algae or other aquatic plants	ca.0.4mg/l	1
	EC50	48h	Crustacea	1.09-3.4mg/l	4
	LC50	96h	Fish	0.213mg/l	4
	Endpoint	Test Duration (hr)	Species	Value	Source
	LC50	96h	Fish	2.6mg/l	2
xylene	EC50	72h	Algae or other aquatic plants	4.6mg/l	2
	EC50	48h	Crustacea	1.8mg/l	2
	NOEC(ECx)	73h	Algae or other aquatic plants	0.44mg/l	2

Toxic to aquatic organisms, may cause long-term adverse effects in the aquatic environment. DO NOT discharge into sewer or waterways

- Bioconcentration Data 8. Vendor Data

Persistence and degradability

Ingredient	Persistence: Water/Soil	Persistence: Air
1,2,4-trimethyl benzene	LOW (Half-life = 56 days)	LOW (Half-life = 0.67 days)
1,3,5-trimethyl benzene	HIGH	HIGH
naphthalene	HIGH (Half-life = 258 days)	LOW (Half-life = 1.23 days)
xylene	HIGH (Half-life = 360 days)	LOW (Half-life = 1.83 days)

Bioaccumulative potential

Ingredient	Bioaccumulation
1,2,4-trimethyl benzene	LOW (BCF = 275)
1,3,5-trimethyl benzene	LOW (BCF = 342)
naphthalene	HIGH (BCF = 18000)
xylene	MEDIUM (BCF = 740)

Mobility in soil

Ingredient	Mobility
1,2,4-trimethyl benzene	LOW (KOC = 717.6)
1,3,5-trimethyl benzene	LOW (KOC = 703)
naphthalene	LOW (KOC = 1837)

SECTION 13 Disposal considerations

Waste treatment methods

- $\mbox{\ }\mbox{\ }\mbox{\ }$ Containers may still present a chemical hazard/ danger when empty.
- ▶ Return to supplier for reuse/ recycling if possible.

Product / Packaging disposal

- Otherwise: If container can not be cleaned sufficiently well to ensure that residuals do not remain or if the container cannot be used to store the same product, then puncture containers, to prevent re-use, and bury at an authorised landfill.
- Where possible retain label warnings and SDS and observe all notices pertaining to the product.
 DO NOT allow wash water from cleaning or process equipment to enter drains.
- It may be necessary to collect all wash water for treatment before disposal.

Issue Date: 02/06/2023

Print Date: 02/06/2023

Puma Solvent Degreaser

Issue Date: 02/06/2023 Print Date: 02/06/2023

- ▶ In all cases disposal to sewer may be subject to local laws and regulations and these should be considered first.
- Where in doubt contact the responsible authority.
 Recycle wherever possible.
- Consult manufacturer for recycling options or consult local or regional waste management authority for disposal if no suitable treatment or disposal facility can be identified.
- Dispose of by: burial in a land-fill specifically licensed to accept chemical and / or pharmaceutical wastes or Incineration in a licensed apparatus (after admixture with suitable combustible material).
 Decontaminate empty containers. Observe all label safeguards until containers are cleaned and destroyed.

SECTION 14 Transport information

Labels Required

Marine Pollutant

HAZCHEM

3Y

Land transport (ADG)

UN number or ID number	1223		
UN proper shipping name	KEROSENE (contains naphtha petroleum, heavy, hydrodesulfurised)		
Transport hazard class(es)	Class 3 Subsidiary risk Not Applicable		
Packing group	III		
Environmental hazard	Environmentally hazardous		
Special precautions for user	Special provisions Not Applicable Limited quantity 5 L		

Air transport (ICAO-IATA / DGR)

UN number	1223				
UN proper shipping name	Kerosene (contains naph	ntha petroleum, heavy, hydrodesulfurise	d)		
Transport hazard class(es)	ICAO/IATA Class 3 ICAO / IATA Subrisk Not Applicable ERG Code 3L				
Packing group	III	III			
Environmental hazard	Environmentally hazardous				
Special precautions for user		Qty / Pack Packing Instructions	A324 366 220 L 355 60 L Y344 10 L		

Sea transport (IMDG-Code / GGVSee)

UN number	1223			
UN proper shipping name	KEROSENE (contains naphtha petroleum, heavy, hydrodesulfurised)			
Transport hazard class(es)	IMDG Class 3 IMDG Subrisk Not Applicable			
Packing group	III			
Environmental hazard	Marine Pollutant			
Special precautions for user	EMS Number Special provisions Limited Quantities			

Issue Date: **02/06/2023**Print Date: **02/06/2023**

Transport in bulk according to Annex II of MARPOL and the IBC code

Not Applicable

Transport in bulk in accordance with MARPOL Annex V and the IMSBC Code

Product name	Group	
naphtha petroleum, heavy, hydrodesulfurised	Not Available	
1,2,4-trimethyl benzene	Not Available	
1,3,5-trimethyl benzene	Not Available	
naphthalene	Not Available	
xylene	Not Available	

Transport in bulk in accordance with the IGC Code

Product name	Ship Type	
naphtha petroleum, heavy, hydrodesulfurised	Not Available	
1,2,4-trimethyl benzene	Not Available	
1,3,5-trimethyl benzene	Not Available	
naphthalene	Not Available	
xylene	Not Available	

SECTION 15 Regulatory information

Safety, health and environmental regulations / legislation specific for the substance or mixture

naphtha petroleum, heavy, hydrodesulfurised is found on the following regulatory lists

Australia Hazardous Chemical Information System (HCIS) - Hazardous Chemicals Australian Inventory of Industrial Chemicals (AIIC)

Chemical Footprint Project - Chemicals of High Concern List International Agency for Research on Cancer (IARC) - Agents Classified by the IARC Monographs - Not Classified as Carcinogenic

1,2,4-trimethyl benzene is found on the following regulatory lists

Australia Hazardous Chemical Information System (HCIS) - Hazardous Chemicals Australia Standard for the Uniform Scheduling of Medicines and Poisons (SUSMP) -Schedule 5 Australian Inventory of Industrial Chemicals (AIIC)

1,3,5-trimethyl benzene is found on the following regulatory lists

Australia Hazardous Chemical Information System (HCIS) - Hazardous Chemicals Australia Standard for the Uniform Scheduling of Medicines and Poisons (SUSMP) -Schedule 5 Australian Inventory of Industrial Chemicals (AIIC)

naphthalene is found on the following regulatory lists

Australia Hazardous Chemical Information System (HCIS) - Hazardous Chemicals Australia Model Work Health and Safety Regulations - Hazardous chemicals (other than lead) requiring health monitoring

Australia Standard for the Uniform Scheduling of Medicines and Poisons (SUSMP) - Schedule 10 / Appendix C

Australian Inventory of Industrial Chemicals (AIIC)

Chemical Footprint Project - Chemicals of High Concern List

International Agency for Research on Cancer (IARC) - Agents Classified by the IARC Monographs

International Agency for Research on Cancer (IARC) - Agents Classified by the IARC Monographs - Group 2B: Possibly carcinogenic to humans

International WHO List of Proposed Occupational Exposure Limit (OEL) Values for Manufactured Nanomaterials (MNMS)

xylene is found on the following regulatory lists

Australia Hazardous Chemical Information System (HCIS) - Hazardous Chemicals Australia Standard for the Uniform Scheduling of Medicines and Poisons (SUSMP) -Schedule 5

Australia Standard for the Uniform Scheduling of Medicines and Poisons (SUSMP) - Schedule 6

Australian Inventory of Industrial Chemicals (AIIC)

International Agency for Research on Cancer (IARC) - Agents Classified by the IARC Monographs - Not Classified as Carcinogenic

National Inventory Status

National inventory status			
National Inventory	Status		
Australia - AIIC / Australia Non-Industrial Use	Yes		
Canada - DSL	Yes		
Canada - NDSL	No (naphtha petroleum, heavy, hydrodesulfurised; 1,2,4-trimethyl benzene; 1,3,5-trimethyl benzene; naphthalene; xylene)		
China - IECSC	Yes		
Europe - EINEC / ELINCS / NLP	Yes		
Japan - ENCS	Yes		
Korea - KECI	Yes		
New Zealand - NZIoC	No (naphthalene)		
Philippines - PICCS	Yes		
USA - TSCA	Yes		
Taiwan - TCSI	Yes		

Chemwatch: 12-49243 Page 16 of 16 Issue Date: 02/06/2023 Version No: 6.1 Print Date: 02/06/2023

Puma Solvent Degreaser

National Inventory	Status	
Mexico - INSQ	Yes	
Vietnam - NCI	Yes	
Russia - FBEPH	Yes	
Legend:	Yes = All CAS declared ingredients are on the inventory No = One or more of the CAS listed ingredients are not on the inventory. These ingredients may be exempt or will require registration.	

SECTION 16 Other information

Revision Date	02/06/2023
Initial Date	17/07/2018

SDS Version Summary

Version	Date of Update	Sections Updated
5.1	10/03/2023	Classification change due to full database hazard calculation/update.
6.1	02/06/2023	Toxicological information - Acute Health (inhaled), First Aid measures - Advice to Doctor, Physical and chemical properties - Appearance, Toxicological information - Chronic Health, Hazards identification - Classification, Ecological Information - Environmental, Exposure controls / personal protection - Personal Protection (Respirator), Handling and storage - Storage (storage incompatibility), Identification of the substance / mixture and of the company / undertaking - Use

Other information

Classification of the preparation and its individual components has drawn on official and authoritative sources as well as independent review by the Chemwatch Classification committee using available literature references.

The SDS is a Hazard Communication tool and should be used to assist in the Risk Assessment. Many factors determine whether the reported Hazards are Risks in the workplace or other settings. Risks may be determined by reference to Exposures Scenarios. Scale of use, frequency of use and current or available engineering controls must be considered.

Definitions and abbreviations

PC-TWA: Permissible Concentration-Time Weighted Average

PC-STEL: Permissible Concentration-Short Term Exposure Limit

IARC: International Agency for Research on Cancer

ACGIH: American Conference of Governmental Industrial Hygienists

STEL: Short Term Exposure Limit

TEEL: Temporary Emergency Exposure Limit。

IDLH: Immediately Dangerous to Life or Health Concentrations

ES: Exposure Standard

OSF: Odour Safety Factor

NOAEL :No Observed Adverse Effect Level

LOAEL: Lowest Observed Adverse Effect Level

TLV: Threshold Limit Value

LOD: Limit Of Detection OTV: Odour Threshold Value

BCF: BioConcentration Factors

BEI: Biological Exposure Index

AIIC: Australian Inventory of Industrial Chemicals

DSL: Domestic Substances List

NDSL: Non-Domestic Substances List

IECSC: Inventory of Existing Chemical Substance in China

EINECS: European INventory of Existing Commercial chemical Substances

ELINCS: European List of Notified Chemical Substances

NLP: No-Longer Polymers

ENCS: Existing and New Chemical Substances Inventory

KECI: Korea Existing Chemicals Inventory

NZIoC: New Zealand Inventory of Chemicals

PICCS: Philippine Inventory of Chemicals and Chemical Substances

TSCA: Toxic Substances Control Act

TCSI: Taiwan Chemical Substance Inventory

INSQ: Inventario Nacional de Sustancias Químicas

NCI: National Chemical Inventory

FBEPH: Russian Register of Potentially Hazardous Chemical and Biological Substances

Apart from any fair dealing for the purposes of private study, research, review or criticism, as permitted under the Copyright Act, no part may be reproduced by any process without written permission from CHEMWATCH.

TEL (+61 3) 9572 4700.